Surface Phenomena of CVD Diamond Films

V.I. Polyakov ^a, A.I. Rukovishnikov ^a, V.G. Ralchenko ^b.

^a Institute of Radio Eng. & Electronics, RAS, 11 Mohovaya str.,103907 Moscow, Russia

^b General Physics Institute, 38 Vavilova str., 117942 Moscow, Russia

Free-standing undoped MPCVD diamond films (200-300 µm thick) have been investigated by charge-based deep level transient spectroscopy (Q-DLTS). Interdigital planar Au/Cr electrodes with 50 μ m spacing (12 mm² area) were realized on the diamond surface by lithographic technique (Fig.1). Q-DLTS was used for study of the influence adsorption and desorption processes on diamond surface states [1,2]. As with other relaxation techniques, Q-DLTS is based on measurements of the transient process of the trapped charge after application of voltage on the material. The method provides information about activation energy, capture cross-section, and density of states. Charge-based DLTS, due to measurements of the charge but not capacitance, gives one a possibility to investigate surface and bulk properties of the structures based on wide bandgap and insulating materials such as undoped diamond [3]. The measured value of the Q-DLTS signal by our ASEC-03 apparatus can be written as $\Delta Q = Q(t_1)$ - $Q(t_2)$, where t_1 and t_2 are the times from the beginning of discharge. The charge ΔQ flowing through the circuit during the time period, $\Delta t = t_2 - t_1$, is measured as a function of parameters of the bias pulse, temperature, and rate window $\tau_{m} = (t_{2} - t_{1})/\ln(t_{2}/t_{1})$.

The strong sensitivity of Q-DLTS spectra to the presence of the vapor water was found (Fig.2,3). For example, the density of surface states $N_t \sim \Delta Q$ (value of Q-DLTS signal) for some prepared diamond samples was increased more then in three order in presence of the vapor water. The kinetic and modification of the water-induced surface states with using different parameters of bias pulse (Fig.3) was measured an investigated also. Furthermore, it was found that Q-DLTS spectra substantially differ for water or isopropyl alcohol adsorbates. Such strong and selective surface phenomena of the CVD diamond films may be exploited in novel Q-DLTS gas sensor devices. ASEC-03 apparatus is sensitive enough to detect less then two thousand of the gas (or vapor) molecules adsorbed on the surface of CVD diamond films.

ACKNOWLEDGMENTS

This work was supported by the International Science and Technology Center (Grant ISTC No 2503).

REFERENCE

1. V.I. Polyakov, A.I. Rukovishnikov, A.V. Khomich, B.L. Druz, D. Kania, A. Hayes, M.A. Prelas, R.V. Tompson, T.K. Ghosh, S.K. Loyalka, Mat. Res. Soc. Symp. Proc.,v. **555**, pp.345-350 (1999).

2. L.K. Bigelow, M.P. D'Evelyn, Surface Science, p.1 (2001)

3. V.I. Polyakov, A.I. Rukovishnikov, N.M. Rossukanyi, B. Druz Mat. Res. Soc. Symp. Proc.,v. 699, pp.219-224 (2002).

Gas (vapor)

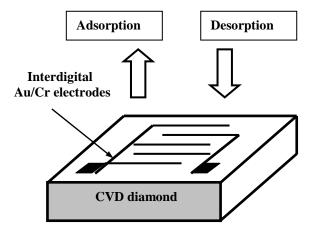
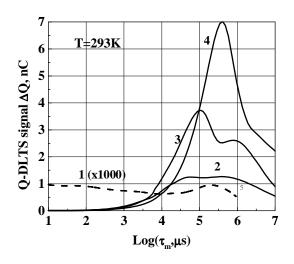
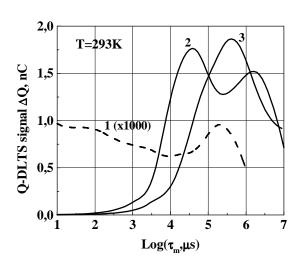


Fig.1. Schematic view of Q-DLTS gas sensor using CVD diamond film.




Fig.2 Q-DLTS spectra of CVD diamond film for bias pulse 10V.

1 - in air (duration of the bias pulse -300 ms).

2 - in water vapor (duration of the bias pulse - 30 ms).

3 – in water vapor (duration of the bias pulse - 100 ms).

4 – in water vapor (duration of the bias pulse - 300 ms).

- Fig.3. Q-DLTS spectra of CVD diamond film for bias pulse 10V with duration 100 ms.
- 1 in air. 2 in water vapor. 3 in water vapor (after applying voltage 10V during 3 s).