FUEL CELL PERFORMANCE USING PROTON CONDUCTING POLYMERS BASED ON HYDROCARBON POLYMERS (II)

Keiichi Kaneko, Yuko Takeoka, Masahiro Rikukawa, and Kohei Sanui

Department of Chemistry, Sophia University

7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan

Operation of polymer electrolyte fuel cells at high temperatures (> 100 °C) without further humidify can minimize CO poisoning of Pt catalyst, improve the energy efficiency, and reduce the size of fuel cell systems. Acid doped polymer electrolytes such as PBI/H₃PO₄ complexes show high proton conductivity even at high temperatures above 100 °C under anhydrous conditions.[1]

In this study, poly(benzimidazole-imide) (PIBI) (Scheme 1) was synthesized as a basic hydrocarbon polymer, which has more rigid structure compared with PBI. Fabrication of PIBI/H₃PO₄ complexes were attempted, and the proton conductivity and fuel cell performances without humidify for the PIBI/H₃PO₄ membrane were also investigated.

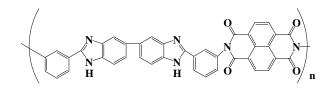
Experimental

PIBI was synthesized by one-step polymerization of naphthalene-1,4,5,8-tetracarboxylic dianhydride and 2,2'-bis(*m*-aminophenyl)-5,5'-bibenzimidazole in *N*,*N*'-dimethylacetamide at 180 °C.[2] The inherent viscosity (η_{inh}) of PIBI was measured with a sulfuric acid solution at a concentration of 0.2 g/dL at 30 °C. PIBI/H₃PO₄ complexes were prepared by immersing PIBI cast films in H₃PO₄/methanol solutions with various concentrations. Proton conductivity of the PIBI/H₃PO₄ films was evaluated by the complex impedance method under anhydrous conditions at the temperature range of 40 to 160 °C. The fuel cell performance of the PIBI/H₃PO₄ film was determined at the cell temperatures above 120 °C by using dry hydrogen and dry air gases as the fuel and oxidant, respectively.

Result and discussion

The synthesis of PIBI was confirmed by FT-IR measurements, and the η_{inh} of PIBI was observed to be 0.85 dL/g. The formation of PIBI/H₃PO₄ was also confirmed by FT-IR measurements. The NH₂⁺ stretching band was observed in the range from 2000 to 3600 cm⁻¹ due to the interactions between H₃PO₄ and imidazole groups. Two characteristic absorption bands of HPO₄²⁻ and H₂PO₄⁻ for PIBI/H₃PO₄ appeared at 950 and 1100 cm⁻¹, respectively. The doping level of H₃PO₄ increased with the concentration of H₃PO₄, and the maximum absorption as much as 358 wt. % was obtained.

Thermal stability of PIBI/H₃PO₄ membranes was investigated by TG-DTA. The thermal decomposition temperature was about 150 °C irrespective of H₃PO₄ doping level. It was considered that this decomposition is due to the loss of water caused by the dehydration of H₃PO₄ molecules. The TG-DTA analyses indicated that PIBI/H₃PO₄ membranes were thermally stable for fuel cell applications.


Figure 1 shows the Arrhenius plots of conductivity for PIBI/H₃PO₄ membranes with various H₃PO₄ contents under anhydrous conditions. The conductivity of PIBI/H₃PO₄ membranes increased with H₃PO₄ doping level and temperature, and reached 6.8×10^{-2} S/cm at 358 wt. % of doping level and at 160 °C. The proton conduction of the PIBI/H₃PO₄ is assumed to occur according to the Grotthus mechanism, which involves an

exchange of protons between H_3PO_4 and HPO_4^{2-} or $H_2PO_4^{-}$.[3]

Figure 2 shows cell potential vs. current density for a 13 cm² hydrogen/air PEFC based on a PIBI/H₃PO₄ (H₃PO₄: 358 wt. %) membrane as a function of cell temperature at 2 ata of supply gas pressure without humidify. The performance of the PIBI/H₃PO₄ membrane raised with increasing cell temperature, and the open circuit voltage and limiting current density were 0.90 V and 1250 mA/cm² at 160 °C, respectively.

Reference

- [1] M. Rikukawa and K. Sanui, *Prog. Polym. Sci.*, **25**, 1463 (2000).
- [2] J. Preston and W. B. Black, J. Polym. Sci., A-1, 5, 2429 (1967).
- [3] M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, N. Ogata, *Electrochim. Acta*, 45, 1395 (2000).

Scheme 1 Structure of PIBI.

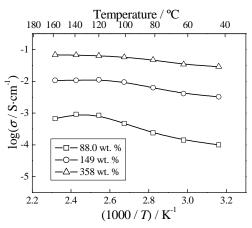


Figure 1 Arrhenius plots of conductivity for PIBI/H₃PO₄ membranes with various H_3PO_4 contents.

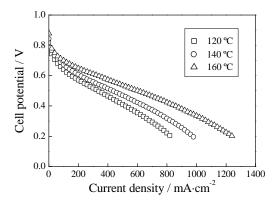


Figure 2 Cell potential vs. current density for a H_2/air PEFC based on a PIBI/ H_3PO_4 (358 wt. %) membrane as a function of cell temperature at 2 ata of supply gas pressure without humidify.