Optical properties of the Quantum Cascade nanocrystalline phosphor $SrAl_{12}O_{19}$: Pr^{3+}

H.A. Comanzo¹, A.A. Setlur¹, A.M. Srivastava¹, P. Schmidt², S.P Compton², U. Happek², W.W. Beers³ ¹GE Global Research 1 Research Circle Niskayuna, NY 12309 ²Department of Physics and Astronomy University of Georgia Athens, GA 30605 ³GE Consumer and Industrial 1975 Noble Rd, Bldg. 335 East Cleveland, OH 44112-6300

We offer a comparative study between the optical properties of nanocrystalline and bulk quantum cascade phosphor, $SrAl_{12}O_{19}$:Pr³⁺ (SAP) [1]. No differences in the excited state properties were determined. The interaction of the Pr³⁺4f5d state with the conduction band of the host lattice is held responsible for the low quantum efficiency of this phosphor. In Figure 1 we have shown the room temperature emission spectrum of the nanocrystalline SAP phosphor. Figure 2 shows the room temperature decay curve of the ¹S₀ emission in this sample. These results are in agreement with those obtained on the large sized material.

REFERENCES

1. A. M. Srivastava and W. W. Beers, J. Lumin., 71 (1997) 285.

ACKNOWLEDGEMENT

This work was partially supported by the U.S. Department of Energy (Grant No. DE-FC26.03NT1945).

Figure 1: TEM and emission spectra ($\lambda_{ex}{=}200$ nm) for nano-SrAl_{12}O_{19}

Figure 2: Room temperature decay curve of nanocrystalline SAP