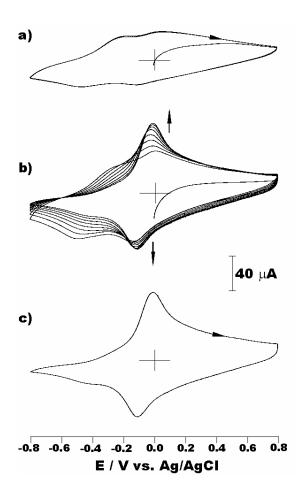
$\label{eq:continuous} \textbf{Electrochemical Redox Processes of} \\ \textbf{Poly(aniline boronic acid)/V_2O_5 Composite} \\$


Eiichi Shoji* and Masahiro Kusakabe

Department of Human and AI Systems, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, JAPAN shoji@chem.his.fukui-u.ac.jp

Conducting polymer hybrid materials as organic/inorganic nanocomposites have attracted considerable interests of, but not limited to, the energy storage materials[1-6]. Vanadium oxide is known as intercalating material having high energy density, specific capacity as well as higher chemical oxidation potential[5]. These features give a good performance of cathode material of lithium secondary battery application. The presence of polyaniline (PANI) in the layers of V₂O₅ increases the electronic conductivity and the mobility of Li⁺ ions so that the charge capacity of the electrodes can be increased [2,3,6]. A great improvement of the performance can be obtained by the conducting intercalants. Here, to examine the relationship between a function and molecular structure of polyaniline intercalants, poly(aniline boronic acid)(PABA) is employed to produce polyaniline intercalants through in-site molecular conversion[7]. This idea includes the new concept of "in-situ molecular conversion" of intercalants to tune redox and chemical reactivities. As one of part of this research projects, this presentation reports a preparation and an electrochemical redox behavior of PABA/V₂O₅ hybrid material.

PABA/V₂O₅ composite was made by mixing aniline boronic acid with vanadyl tris(isopropoxide). An immediate precipitation happens to PANI/V₂O₅ system after mixing aniline with vanadyl tris(isopropoxide). However, the mixture of 3-aminophenyl boronic acid with vanadyl tris(isopropoxide) produces a homogeneous dark greenish black solution. After casting this solution onto the electrode, the film of this composite was obtained. The figure shows CVs of a) V2O5 alone, b) PABA/ V2O5 composite in AN solution containing 0.2M LiClO₄. The figure c) shows a steady-state CV after several scanning of b). As can be seen, the charge capacity of PABA/V2O5 composite c) has been dramatically increased after several cycles of potential. These results suggest that mixing ABA monomer with V2O5 producing PABA/V2O5 composite is easy and efficient method to facilitate mobility of Li⁺ ions.

The influence of several structural/chemical features and measurement conditions will be discussed.

REFERENCES

- Mercour G. Kanatzidis, Chun-Guey Wu, Henry O. Marcy, Donald C. DeGroot, and Carl R. Kannewurf, Chem. Mater, 1990, 2, 222-224
- F. Leroux, B. E. Koene, and L. F. Nazar, J. Electrochem. Soc., 1996, 143(9), L181-L183
- C. -G. Wu, D. C. DeGroot, H. O. Marcy, J. L.
 Schindler, C. R. Kannewrf, Y. -J. Liu, W. Hirpo, and
 M. G. Kanatzidis, Chem. Mater, 1996, 8, 1992-2004
- 4. E. Shouji, D. A. Buttry, *Langmuir*, **1999**, *15*, 669-673
- E. Shouji, E.; Buttry, D.A., Electrochem. Acta, 2000, 45(22-23), 3757-3764.
- Fritz Huguenin. Edson A. Ticianelli, Roberto M.
 Torresi, Electrochem. Acta, 2002, 47, 3179-3186.
- E. Shoji, M. S. Freund, *Langmuir*, **2001**, *17*, 7183-7185.