Effect of Metal Loading on H₂ Sensing Properties of SnO₂ Modified with Mesoporous SnO₂

Y. Shimizu^{1,*}, K. Tsumura², T. Hyodo² and M. Egashira²
¹Graduate School of Science and Technology
²Faculty of Engineering, Nagasaki University
1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

In order to clarify the effect of metal loading on the H₂ sensing properties of thick film semiconductor gas sensors, several SnO₂-based powders have been prepared and tested. SnO₂ powder was prepared by calcination of tin oxalate at 600°C for 5 h. Loading of 0.5 wt% Ru or Pd on the SnO₂ (0.5M/SnO₂, M = Ru or Pd) powder was conducted by a conventional method. Procedure of surface modification of the SnO₂ powder with a mesoporous SnO₂ (m-SnO₂) layer has been described elsewhere.¹⁾ Response of the sensors was measured to 1000 ppm H₂ in air at 250-550°C. Magnitude of the response was defined as the ratio (R_a/R_g) of sensor resistance in air (R_a) to that (R_g) in 1000 ppm H₂ balanced with air.

Figure 1 compares the H₂ sensing properties of thick film sensors (film thickness: ca. $30-40 \ \Box m$) prepared with several SnO₂-based powders. The surface modification with an m-SnO₂ layer led to improvement of H₂ response in the temperature range studied, and the improvement became remarkable by the repetition (see the data for m-SnO₂(2)/SnO₂). Loading of Ru or Pd on the SnO₂ powder was also effective, especially at lower temperatures than 400°C. The improvement induced by the surface modification may be explained by diffusion control of gaseous O₂, while that induced by the loading by the chemical sensitization effect.

More significant improvement in H2 response could be achieved with the twice surface modification of $0.5 \text{Ru}/\text{SnO}_2$ (see the data for m-SnO₂(2)/(0.5 \text{Ru}/\text{SnO}_2)), as shown in Fig. 2, whereas the Ru loading after the surface modification (see the data for 0.5Ru/m-SnO₂(2) /SnO₂) resulted in comparable response with that for a unloaded sensor. In contrast, the maximum H₂ response was ca. 25 at most in the case of $m-SnO_2(2)/(0.5Pd$ Thus, the $m-SnO_2(2)/(0.5Ru/SnO_2)$ sensor $/SnO_2$). exhibited the highest H₂ response among the sensors studied. But, the sensor showed rather slow recovery, whereas its response was very fast. These results suggest that the markedly improved response of the m-SnO₂(2)/(0.5Ru/SnO₂) sensor arises from a synergy effect of the diffusion control and the chemical sensitization. The Ru loading after the surface modification may reduce the permeation amount of H₂ into the SnO₂ surface, and the Pd loading before and after the surface modification may induce a similar result due to higher catalytic activity than Ru.

 T. Hyodo, S. Abe, Y. Shimizu, M. Egashira, *Sens. Actuators B*, **93**, 590 (2003).

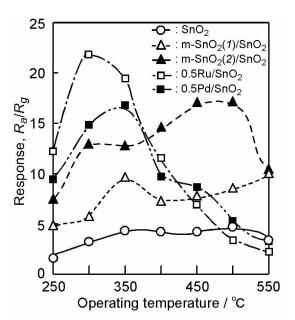


Fig. 1 Operating temperature dependence of response of sensors to 1000 ppm H_2 .

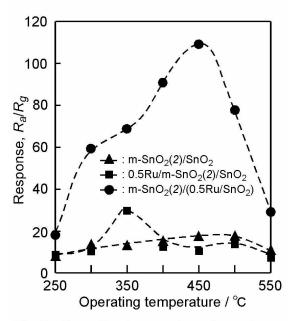


Fig. 2 Operating temperature dependence of response of sensors to 1000 ppm H_2 .

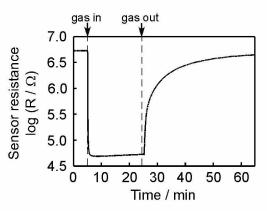


Fig. 3 Response transient of m-SnO₂(2) $/(0.5Ru/SnO_2)$ to 1000 ppm H₂ at 450°C.