CONTENTS

Amperometric Sensors

Voltohmmetry - An Alternative Detection Principle at Ultrathin Metal Electrodes in Solution
H. Emons, O. Glueck, and M. J. Schöning (Research Center Jülich)..................1

New Voltammetric Sensors for Alkaline Cations Based on Ionophores Incorporated into a Self-assembled Thiol Monolayer
H. Aoki, Y. Umezawa (University of Tokyo), S. Rondinini, and A. Vertova (University of Milan).................................4

Electrocatalytic Sensing Using Novel Interfaces of Well-Ordered Hybrid Inorganic/Organic Monolayers
D. Martel, A. Kuhn (Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux), P. J. Kulesza, M. Chojak, A. Lewera (University of Warsaw), and M. A. Malik (Technical University of Czestochowa)...10

Integration of Chemical and Electrochemical Devices with Silicon Microelectronics Enabling Microsensors and Reactors
P. Kohl (Georgia Institute of Technology)..17

Features and Conditions for Subtractive ASV Using Silver and Gold Electrodes
Y. Bonfil, M. Brand, and E. Kirowa-Eisner (Tel-Aviv University)...............27

Electrochemical Immunosensors using iridium oxide immobilized antibodies
M. S. Wilson and D. Rauh (EIC)..34

Ion Sensing with Poly(pyrrole) Based Membranes - Comparison Between Amperometric and Potentiometric Operation Mode
A. Michalska, S. Walkiewicz, and K. Maksymiuk (University of Warsaw).....42

Amperometric Urea Biosensor Using Polypyrrole with Different Dopants
L.H. Dall'Antonia and S. Cordoba de Torresi (Universidade de Sao Paulo)....49

Amperometric Determination of Urea and Acetic Acid Using Electrodes Coated with Tri-enzyme/Polydimethylsiloxane-Bilayer Membranes
Mutual Interferences of Hydrogen and Carbon Monoxide in Amperometric Gas Sensors
J. Stetter and Y.-T. Chao (Illinois Institute of Technology)..69

Amperometric Ammonia Sensor Using Polypyrrole and Substituted Polypyrrole with Different Dopants
L.H. Dall’Antonia, M. Vidotti Miyata, S. Cordoba de Torresi (Universidade de São Paulo), and R. Torresi (Instituto de Química de São Carlos-USP)..76

Determination of the Concentration of Gaseous Impurities in Air Using a System of Uncalibrated Sensors of Amperometric Type
V. Chviruk, O. Linyucheva, and O. Buket (National Technical University of Ukraine)...**

Quartz Crystal Devices

Kinetics of Redox Switching of Electroactive Polymers Using the Electrochemical Quartz Crystal Microbalance. II. Identifying the Rate Limiting Step for the Redox Switch of Poly(vinylferrocene) in Aqueous Sodium Hexafluorophosphate Solutions
I. Jurevičiūte (Institute of Chemistry,), S. Bruckenstein (University at Buffalo/SUNY), and A. R. Hillman (University of Leicester)...82

Combined QCM and Electrochemical Impedance Measurements for Biosensor Applications
A. Sabot, C. Sumner, and S. Krause (University of Sheffield).........................98

A Novel Tool Based on Ac-QCM Transducers for Improving Antigens/Antibodies Interactions
S. Al-Sana, C. Gabrielli, and H. Perrot (Université P. et M. Curie).................109

The Application of a Bulk Acoustic Wave Sensor for Pesticide Detection in Liquids
G. Chen, C. Zhang, D. Frankel, R. Bushway, and J. Vetelino (University of Maine)..116

An Acoustic Wave Sensor for Monitoring Ammonium in Water
C. Zhang, C. Kim, P. Millard, and J. Vetelino (University of Maine).........121

Liquid Dielectric Constant Measurement Based on Thickness Shear Mode Quartz Resonators
C. Zhang and J. Vetelino (University of Maine)...125
Sensor Systems

Electrochemical Time-of-Flight Investigations of the Diffusion Processes in Complex 2D and 3D Molecular Systems
K. Slowinska, M. Johnson, M. Wittek, G. Moeller, and M. Majda (University of California at Berkeley)..........................130

Correction of Sensor Inaccuracy Arising from Drift Based on a Signal Processing Technique
S. Jamsb (Conexant Systems and University of California Irvine), S. D. Collins, and R. L. Smith (University of California Davis).........................138

"High Order" Hybrid Sensor Module Based on an Identical Transducer Principle
A. Poghossian (Research Centre Jülich), L. Berndsen (University of Applied Sciences Aachen), J. Schultz (Institute of Physical Chemistry and Electrochemistry), H. Lüth (Research Centre Jülich), and M. Schönig (University of Applied Sciences Aachen)......................143

Flexible, Flat-form, Microfabricated Sensors for Substrate Concentrations and Enzyme Activities
R. P. Buck (University of North Carolina), S. Ufer (Duke University), E. Lindner, R. Gyursanyi (University of Memphis), G. Nagy, and L. Nagy (University of Pecs)..........................153

Biological Sensors

Renewable Surface Biosensors with Optical Detection
C. Bruckner-Lea, E. Ackerman, B. Dockendorf, D. Holman, and J. Grate (Pacific Northwest National Laboratory).............................157

Microscaled Living Bioelectronic Systems-Coupling Beetles to Silicon Transducers
M. Schönig (University of Applied Sciences Aachen), P. Schröth (Research Centre Jülich GmbH), H. Hummel (University Giessen), B. Weißbecker (University Ulm), H. Lüth (Research Centre Jülich GmbH), and S. Schütz (University Ulm)...165

Spectroscopic and Electrochemical Studies of Bilayer Lipid Membranes Tethered to the Surface of Gold
P. Krysinski, B. Palys, A. Zebrowska (University of Warsaw), and Z. Lotowski (University of Bialystok)..174
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiral Analysis of Amino Acids Using Composite Bienzyme Biosensors</td>
<td>R. Domínguez, B. Serra, A.J. Reviejo, and J.M. Pingarrón</td>
<td>(Universidad Complutense de Madrid)</td>
<td>187</td>
</tr>
<tr>
<td>Biosensors Based on Protein Adsorption on Nanoporous TiO2 Films</td>
<td>E. Topoglidis, C. J. Campbell, A. E. G. Cass, and J. R. Durrant</td>
<td>(Imperial College of Science, Technology and Medicine)</td>
<td>196</td>
</tr>
<tr>
<td>Detection Mechanism Of Carbon-Epoxy Enzyme Based Sensors</td>
<td>M. Khurana, C. P. Winlove, and D. O'Hare</td>
<td>(Imperial College of Science, Technology and Medicine)</td>
<td>203</td>
</tr>
<tr>
<td>Biosensors From Conductive Polymer Transducers and Sol-Gel Encapsulated Bioindicator Molecules</td>
<td>F. Yamagishi, T. Stanford, and C. van Ast</td>
<td>(HRL Laboratories)</td>
<td>213</td>
</tr>
<tr>
<td>Simultaneous Voltammetric Determination of Aluminum and Iron in High Salt Content Matrices: Application to Dialysis Fluids</td>
<td>C. Locatelli and G. Torsi</td>
<td>(University of Bologna)</td>
<td>224</td>
</tr>
<tr>
<td>Environmental Sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soybean as an Environmental Biosensor: Action Potentials and Excitation Waves</td>
<td>A. Volkov, J. Mwesigwa, and T. Shvetsova</td>
<td>(Oakwood College)</td>
<td>229</td>
</tr>
<tr>
<td>Solid Phase Microextraction of Anions of Environmental Interest: Applications of Conducting Polymer Microfiber Electrodes for Injection System for HPLC and FIA</td>
<td>H. B. Mark, Jr., O. Ceylan, T. Gbatu, A. Galal, J. F. Rubinson, and J.A. Caruso</td>
<td>(University of Cincinnati)</td>
<td>239</td>
</tr>
<tr>
<td>Glucose Sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electropolymerised Architecture Entraping a Trilcunary Keggin-Type Polyoxmetalate for Assembling a Glucose Biosensor</td>
<td>G. L. Turdean, A. Curulli</td>
<td>(Centro Studio CNR per l'Elettrochimica e la Chimica Fisica delle Interfasi (CNR-CECFI)), I. C. Popescu, C. Rosu</td>
<td>245</td>
</tr>
</tbody>
</table>
Online Measurement of Glucose in a Rotating Wall Perfused Vessel Bioreactor using an Amperometric Glucose Sensor
Y. Xu, A. Jeevarajan, J. Fay, T. Taylor (Wyle Life Sciences), and M. Anderson (NASA).................................251

Detection of Glucose by Electroreduction at a Semiconductor Electrode: An Implantable Non-Enzymatic Glucose Sensor
S. Khan and S. Shah (Duquesne University)..259

Fabrication and Properties of Needle Type Glucose Sensors Using Electropolymerization Procedure
M. Yasuzawa, T. Yamada, H. Takaoka, S. Inoue, A. Kunugi (University of Tokushima), and S. Imai (Toyo Precision Parts MFG).........................272

Potentiometric Sensors

Recent Applications of Carbon Paste Electrodes in Potentiometry and Stripping Analysis
K. Vytras, I. Svanecara (University of Pardubice), E. Khaled (National Research Centre), J. Jezeéka (University of Pardubice), K. Kalcher (Karl-Franzens University), J. Konvalina, and R. Metelka (University of Pardubice)..277

Comparing Different Approaches for Assembling Selective Electrodes for Heavy Metals
I. Turyan, M. Atiya, G. Shustak, and D. Mandler
(Hebrew University of Jerusalem)...284

Polyaniline as A Non-enzymatic Sugar Sensor: Potentiometric Sensors Based on the Inductive Effect on the pKₐ
E. Shoji and M. S. Freund (California Institute of Technology)......................293

Sensors Systems

Visualization of Micro-Structured Enzyme Patterns Using Scanning Electrochemical Microscopy (SECM)

Imaging of Patterned Mammalian Cells By Scanning Electrochemical Microscopy
M. Nishizawa, T. Kaya, K. Takoh, K. Nishimura, Y. Takai, and T. Matsue (Tohoku University)..315
Anomalous Responses of Gold Sensor Electrodes Due to the Presence of Metastable Surface States
D. Burke and A. O'Mullane (University College Cork)..320

Interpretation of Variable Diffusivity Observed at the Prussian Blue Electrode during the Insertion/Extraction Processes
L.-C. Chen and K.-C. Ho (National Taiwan University)..329

Biological Sensors

Prussian Blue and its Analogues for Design of Chemical and Biological Sensors
A. Karyakin, L. Lukachova, and E. Karyakina
(M.V. Lomonosov Moscow State University)...**

Wiring Efficiency in Layer-by-Layer (PAA-Os)n(GOx)n Self-assembled Glucose Biosensors
E. Calvo, C. Danilowicz, A. Wolosiuk, M. Otero (Universidad de Buenos Aires), E. Forzani, and M. Lopez Teijelo
(Universidad Nacional de Córdoba)..339

Particle-based Electrochemical Detection of DNA Hybridization
J. Wang (NMSU)...**

Sensors Systems

Bio/Nano Sensors
C. Martin, S.B. Lee, B. Raines, D. Mitchell, M. Wirtz,
and E. Steinle (University of Florida)...**

Chemical Sensing with an Integrated Preconcentrator/Chemiresistor Array
R. Hughes, R. Manginell, and R. Kottenstette (Sandia National Labs)..............348

Progress in use of Carbon Black-Polymer Composite Arrays for Vapor Detection
S. Briglin, M. Burl, M. Freund, P. Tokumaru, T. Vaid,
and N. Lewis (California Institute of Technology)...355

Development of Polymer Coatings with High Surface-to-volume Ratio for Chemical sensor Application
N. Levit, D. Pestov, and G. Tepper (Virginia Commonwealth University)......369
Multiwell Microfluidic Plates for Evaporation-controlled Sub-microliter Assays: Design and Results
P. Vanysek, T. Boone, T. Dang, H. Geiger, M. Zhao,
C. Klapperich, H. Lee, D. Nicewarner, R. Kurnik, S. Singh,
and V. Xiao (ACLARA Biosciences)..376

Simulation of Transient Isotachophoresis (Stacking) for Concentration of Samples in a Microfluidic Device
R. Kurnik, T. Boone, I. Gibbons, J. Wei,
and S. Williams (ACLARA BioSciences)...384

Electrodes Integrated Microfluidic Plastic Chips
M. Zhao (ACLARA BioSciences Inc.), R.M. Crooks (Texas A&M University), U. Nguyen, and A.J. Ricco (ACLARA BioSciences)........388

A New Micro-fluidic Device for Protein Separation Fabricated on a Silicon Substrate
H. Ho Lee and Y. Kuo (Texas A&M University).................................395

Ni(salen) Polymer Modified Electrodes as Sensors for Metal Ions
C. Freire, C. Sousa, M. Martins (Faculdade de Ciencias do Porto),
R. Hillman, and R. Hillman (University of Leicester)........................399

Chemiresistor Vapor Sensor Array Employing Monolayer-Encapsulated Metal (MenM) Nanoclusters
E. Zellers and Q.-Y. Cai (University of Michigan)..............................408

NO₂ Sensing Properties of FET Device Attached with NaNO₂-based Binary Auxiliary Phase
S. Nakata, K. Shimanoe, N. Miura, and N. Yamazoe (Kyushu University)....414

A. Shapurko (Russian Academy of Sciences), K. Nietering,
and R. Soltis (Ford Research Laboratory)..424

The Effect of Tin in Pt Electrode for CO Electrochemical Sensors
K.-I. Tsceng and M.-C. Yang (National Cheng Kung University)............433

On-Line Electrochemical Sensors for Monitoring Time-Dependent Water-polymer Interactions in Industrial Lubricants
V. Lvovich (Lubrizol) and M. Smiechowski (Case Western Reserve University)...442
RF Sputtered and Sol-gel Prepared Comparison of MoO$_3$-TiO$_2$
Microstructure and Gas Sensing Properties
E. Comini (Istituto Nazionale di Fisica Nucleare), K. Galatsis,
W. Wlodarski (RMIT University), P. Siciliano, A. Taurino (Istituto
per lo Studio di Nuovi Materiali per l’Elettronica),
and G. Sberveglieri (Istituto Nazionale di Fisica Nucleare)..................**

Electrodeposition of Poly(1,8-diaminonaphthalene) Films for Toxic
Chromate Extraction from Bathing Solution
A. Nasalska and M. Skompska (Warsaw University)..........................454

Potentiometric Sensors

Mixed Potential Sensors for CO Monitoring
R. Mukundan, E. Broska, and F. Garzon (Los Alamos
National Laboratory)...464

Semiconductor Sensors

Mixed Vanadium/Aluminum Oxide Films for Sensing of Organic
Compounds
C. Baratto, G. Sberveglieri, I. Ricco (University of Brescia),
G. Bernhardt, R. Lad, and J. Vetelino (University of Maine)..................470

SnO$_2$ Thin Films Doped or Catalyzed with Mo: Structural and Gas Sensing
Properties
E. Zampiceni, E. Bontempi, G. Sberveglieri, and L. E. Depero
(Istituto Nazionale di Fisica Nucleare and University of Brescia).............475

Detection of Dilute Chlorine Gas Using Indium Oxide Thin Film Sensors
J. Tamaki, E. Nishimura, C. Naruo, Y. Yamamoto,
and M. Matsuoka (Ritsumeikan University).....................................480

Optical Sensors

Simulation of Microdisc Problem in Spherical Co-ordinates: Application to
Electrogenerated Chemiluminescence
I. Svir, A. Oleinick, and V. Golovenko (Kharkov State Technical
University of Radioelectronics)..488

Spectroelectrochemical Sensing Based on Multimode Selectivity
Simultaneously Achievable in a Single Device. 12. Characterization of a
Channel Waveguide
S. Ross, C. Seliskar, W. Heineman, S. Aryol,
and J. Nevin (University of Cincinnati)...499
Photonic Lattices as Diffraction Based Chemical Sensors
R. Bailey, B.-C. Tzeng, X. Dang, G. Mines, K. Walters, and J. Hupp (Northwestern University)..........................511

The Micro-Optical Ring Electrode: Development of a Novel Electrode for Photo electrochemistry
F. Andrieux, S. Xiao, C. Boxall (University of Central Lancashire), and D. O'Hare (University of Brighton).......................521

Chemical Sensing for Liquid-Property by Using A Hetero-Core Optic Fiber
K. Hirama, M. Iga, A. Seki, Y. Kubota, and K. Watanabe (Soka University)..534

Semiconductor Sensors

Molybdenum Stabilization of Nanostructured Titania Films and Ethanol Sensing Properties
E. Comini, M. Ferroni, V. Guidi, G. Sberveglieri, A. Vomiero, and G. Roncarati (Istituto Nazionale di Fisica Nucleare)........538

Sensor Systems

Electrochemiluminescence (ECL) of Ru(bpy)$_3^{2+}$ in the Presence of Tripropylamine: Effects of Additives on the ECL Reaction
O. Hatozaki, K. Komori, and N. Oyama (Tokyo University of Agriculture and Technology)..**

Nanoporous Platinum for Biomedical Sensors
D. Pugh and S. Corcoran (Virginia Technology)...**

Optical Sensors

Electrochromic Sensor for Hydrogen-Phosphate Ion with Spinel-Type Oxide-Based Thin-Film Electrode
Y. Shimizu, M. Shiotsuka, and S. Takase (Kyushu Institute of Technology)..543

A Porous Silicon Microcavity as an Optical and Electrical Multiparametric Chemical Sensor
C. Baratto (University of Brescia), Z. Gaburro (University of Trento), G. Faglia, G. Sberveglieri (University of Brescia), and L. Pavesi (University of Trento)..........................550

ATR Bioanalytical Sensor with 3D Spatial Resolution
Y. Cheng, J.-H. Tu (Synchrotron Radiation Research Center), and C.-C. Chieng (Tsing-Hua University)..............................555
Poster Session

Electrochemical Determination of Interaction Between an Alkylation Anticancer Drug and DNA in Solution and at the Electrode Surface
A. Erdem and M. Ozoş (New Mexico State University)..........................563

Characterization, Modeling, and Correction of Drift in Complementary pH ISFET's
S. Jamab (Conextant Systems and University of California, Irvine),
S.D. Collins, and R.L. Smith (University of California, Davis)..............576

Mass Transport in Swollen Thermoresponsive Hydrogels: Theoretical Model
and Electroanalytical Studies
M. Ciszkowska and W. Zhang (Brooklyn College, CUNY).....................582

Alkali Metal Ion Coordination of Novel Poly(thiophene)s 3,4-functionalized
with Crown-Ether Moieties
G. Zotti, S. Zecchin, G. Schiavon (Istituto CNR di Polarografia ed
Elettrochimica Preparativa), and A. Berlin (Centro CNR Sintesi e
Stereochimica Speciali Sistemi Organici)...589

Voltammetric Determination of Chloramphenicol at Electrochemically
Activated Carbon Fiber Microelectrodes
L. Aguí, P. Yáñez-Sedeño, and J.M. Pingarrón (Universidad
Complutense de Madrid)...596

Preparation, Characterization and Application of Alkanethiol Self-
Assembled Monolayers Modified With Tetrathiafulvalene and Glucose
Oxidase at a Gold Disk Electrode
S. Campuzano, R. Gálvez, M. Pedrero, F.J. Manuel de Villena,
and J.M. Pingarrón (Universidad Complutense de Madrid)....................602

Theoretical Model of an Acoustic Wave Liquid Conductivity Sensor
C. Zhang and J. Vetelino (University of Maine).................................609

Detection of Ammonia Using a Zirconia-Based Potentiometric Sensor with a
Tungsten-Oxide Electrode
D. Kubinski, R. Soltis, J. Visser,
and M. Parsons (Ford Research Laboratory)...615

Tantalum Capacitive Microelectrode Array for a Neural Prosthesis
D. Zhou and B. Greenberg (Second Sight)...622
Use of the C-PVC electrode for the electrooxidation of dopamine, ascorbic acid and uric acid
 R. Aguilar, M. Dávila, M.D.L.P. Elizalde, R. Silva (Universidad Autónoma de Puebla), J. Mattusch (Center for Environmental Research, Dept. of Analytical Chemistry), and R. Wennrich (Center for Environmental Research).**

Study on Hydrogen Detection by Schottky Diode Sensors

Synthesis of SnO₂ Nanosized Powder by Mechanochemical Method for Sensing of H₂S
 U. Kersen (University of Helsinki). ..**

Simultaneous Determination of Phenolic Compounds by Multicomponent Biosensors

Studies of the Permeabilities of Sol-gel Ceramic Films on Glassy Carbon Electrodes to Fe(CN)₆³⁻, Fe³⁺ and Hydroquinone
 F. Chen (NUS). ...**

Amperometric Sensors for Determination of Concentration of Hydrogen Halogenids in Environmental Air
 V. Chvituk, O. Linyucheva, and E. Zaverach E. (National Technical University of Ukraine).**

Sensor Chip Patterning: Advantages of Micro- and Nanopatterns by Means of Porous Silicon Technology
 A. Kurowski, J.W. Schultze (Heinrich-Heine-Universitaet Düsseldorf), H. Lüth, and M.J. Schoening (Research Center Jülich).**

Effect of Electrochemical Reduction on the Stability of Complexes of Alkali Metal Ions with Crown Ether Derivatives
 J.M.C. Costa (University of Coimbra), P.M.S. Rodrigues (Polytechnic Institute of Guarda), and M.C.C. Costa (Polytechnic Institute of Coimbra).**

Electrochemical Reduction of Carbon Dioxide
 H.T. Mishima, S. Pettinichi, H.J. Boggetti (Universidad Nacional de Santiago del Estero), and E. Pastor (Universidad de la Laguna).639
A Novel pH Sensor
Laura Galicia, Alberto Rojas-Hernandez, and Maria Teresa Ramirez-Silva (Universidad Autonoma Metropolitana Iztapalapa).646

Glucose Quantification in Commercial Serums by Means of Amperimetric Bi zincimatic Biosensor Based on a Biocomposite Rigid Matrix
R. Beatriz (Universidad Nacional Autonoma de Mexico), R.-S. Maria Teresa (Universidad Autonoma Metropolitana-Iztapalapa),
and M.-P. Adriana (Universidad Nacional Autonoma de Mexico).**

Enzyme Sensor Based on an Electrochemically Deposited Osmium Redox Polymer
K. Maruyama, Y. Mishima, and J. Motonaka (University of Tokushima).**

Development of Amperometric Immunosensors Using Positively Charged Ferrocene Polymer
M. Yasuzawa, H. Hamada, K. Oga, H. Mistui,
and A. Kunugi (The University of Tokushima).................................653

Porous Silicon Sensors with Membrane Structure for Organic Vapor Sensing
S. J. Kim, S. H. Lee (Kyungnam University),
and C. J. Lee (Kunsan National University).................................657

Electropolymerized Fe-Protoporphyrin IX And Cu-Protoporphyrin IX Mimicking Cytochrome-c Oxidase Activity
J.M. Vago, V. Campo Dall' Orto,
and I.N. Rezzano (University of Buenos Aires).................................**

Potential Relaxation of the Superionic System Sensitive to CO2 Concentration
A. Ukhe, L. Leonova (Institut of Problems of Chemical Physics),
I. Treglazov (Moscow State University),
and Y. Dobrovolsky (Institut of Problems of Chemical Physics).**

Characterization of Stereolithography Fabricated Gas Chromatographic Columns
A. Tse, L. Seals, J. Gole, D. Rosen,
and P. Hesketh (Georgia Institute of Technology).........................664

Immunosensor for Herbicide 2,4-Dichlorophenoxyacetic Acid
M. Hepel, J. Halamek (State University of New York at Potsdam),
and P. Skladal (Masaryk University)..669

** No proceedings manuscript was received.