Application Deadline: April 15

Vittorio de Nora AwardThe Vittorio de Nora Award was established in 1971 to recognize distinguished contributions to the field of electrochemical engineering and technology.

The award consists of a gold medal and a plaque that contains a bronze replica thereof, both bearing the recipient’s name, the sum of $7,500, complimentary meeting registration for award recipient and companion, a dinner held in recipient’s honor during the designated meeting, and Life Membership in the Society. The recipient shall receive the award at the spring 2018 biannual meeting in Seattle, WA, USA and deliver a general address on a subject related to the contributions for which the award is being presented.

Submit an application today!

The Electrochemical Society distinguishes outstanding technical achievements in electrochemical, solid-state science and technology, and recognizes exceptional service to the Society through the Honors & Awards Program. Recognition opportunities exist in the following categories: Society Awards, Division Awards, Student Awards, and Section Awards. We could not do it without you!

Just one day after Volkswagen agreed to pay $4.3 billion to settle allegations over its diesel emissions cheating scheme, another major auto company is being accused by the Environmental Protection Agency for violating the Clean Air Act.

The EPA claims that Fiat Chrysler installed software that alters emission readings in over 100,000 cars and trucks. According to reports, the car company’s software resulted in increased emissions of nitrogen oxides beyond the allowances detailed in the Clean Air Act.

“The software is designed such that during the emissions tests, Fiat Chrysler’s diesel cars meet the standards that protect clean air,” EPA Assistant Administrator Cynthia Giles told NPR. “However, under some other kinds of operating conditions, including many that occur frequently during normal driving, the software directs the emissions control system to operate differently, resulting in emissions that can be much higher.”

Fiat Chrysler responded to the claims in a statement, saying “FCA US looks forward to the opportunity to meet with the EPA’s enforcement division and representatives of the new administration to demonstrate that FCA US’s emissions control strategies are properly justified and thus are not ‘defeat devices’ under applicable regulations and to resolve this matter expeditiously.”

Posted in Technology

Battery fires led to the recall of nearly 2 million Samsung Galaxy Note 7 smartphones. In order to address this safety concern, researchers at Stanford University have identified 21 solid electrolytes for solid state batteries that could power the next-generation of electronics.

“Electrolytes shuttle lithium ions back and forth between the battery’s positive and negative electrodes,” says lead author of the study Austin Sendek, a doctoral candidate at Stanford University, who worked with ECS member Yi Cui on this research. “Liquid electrolytes are cheap and conduct ions really well, but they can catch fire if the battery overheats or is short-circuited by puncturing.”

As demands from the electronics industry grow and consumers become more suspicious of lithium-ion technology, researchers have started focusing efforts on creating an all-solid-state battery.

“The main advantage of solid electrolytes is stability,” Sendek says. “Solids are far less likely to blow up or vaporize than organic solvents. They’re also much more rigid and would make the battery structurally stronger.”

Posted in Batteries

Achieving a More Efficient Catalyst

Nanoporous goldA new study out of Lawrence Livermore National Laboratory shows that catalysts derived from nano-structured materials are as good as gold.

According to the study, led by past ECS member Juergen Biener, restructuring nanoporous gold alloys result in more efficient catalysts.

Nano-structured materials have shown promising qualities for improving catalyst activity and selectivity, but little is known about the structural changes that the materials undergo that can create or prevent efficient catalyst function.

This from LLNL:

The team used ozone-activated silver-gold alloys in the form of nanoporous gold (npAu) as a case study to demonstrate the dynamic behavior of bi-metallic systems during activation to produce a functioning catalyst. Nanoporous gold, a porous metal, can be used in electrochemical sensors, catalytic platforms, fundamental structure property studies at the nanoscale and tunable drug release. It also features high effective surface area, tunable pore size, well-defined conjugate chemistry, high electrical conductivity and compatibility with traditional fabrication techniques.

(more…)

Nano-chimney to Cool Circuits

Overheating has emerged as a primary concern in the development of new electronic devices. A new study from Rice University looks to provide a solution to that, offering a strategy to vent heat away from nano-electronics through cone-like chimneys.

By putting these “chimneys” between the graphene and nanotube, the researchers effectively eliminate a barrier that typically blocks heat from escaping.

This from Rice University:

Researchers at Rice University discovered through computer simulations that removing atoms here and there from the two-dimensional graphene base would force a cone to form between the graphene and the nanotube. The geometric properties of the graphene-to-cone and cone-to-nanotube transitions require the same total number of heptagons, but they are more sparsely spaced and leave a clear path of hexagons available for heat to race up the chimney.

(more…)

Catalysts

Image: MIT

The future of renewable energy heavily depends on energy storage technologies. At the center of these technologies are oxygen-evaluation reactions, which make possible such processes as water splitting, electrochemical carbon dioxide reduction, and ammonia production.

However, the kinetics of the oxygen-evolution reactions tend to be slow. But metal oxides involved in this process have catalytic activities that vary over several orders of magnitude, with some exhibiting the highest such rates reported to date. The origins of these activates are not well-understood by the scientific community.

A new study from MIT, led by 2016 winner of the Battery Division Research Award, Yang Shao-Horn, shows that in some of these catalysts, the oxygen does not only come from surrounding water molecules – some actually come from within the crystal lattice of the catalyst material itself.

(more…)

Waste waterA new study led by ECS member Haluk Beyenal reveals a novel type of cooperative photosynthesis with potential applications in waste treatment and bioenergy production.

The research details a unique metabolic process observed for the first time in a pair of bacteria, which could be used to engineer microbial communities. Beyenal and his team honed in on a bacterium known as Prosthecochloris aestaurii, which is able to photosynthesize by using sunlight and elemental sulfur or hydrogen sulfide.

This from Washington State University:

The researchers noticed that P. aestuarii tended to gather around a carbon electrode, an electricity conductor that they were operating in Hot Lake. The researchers isolated and grew P. aestuarii and determined that, similar to the way half of a battery works, the bacterium is able to grab electrons from a solid electrode and use them for photosynthesis. The pink-colored Geobacter sulfurreducens meanwhile, is known for its ability to convert waste organic matter to electricity in microbial fuel cells. The bacterium is also used in environmental cleanup.

(more…)

BiofuelBiofuels have become a promising potential alternative for traditional fossil fuels. However, producing biofules only make sense if the greenhouse gasses emitted are less than other means of producing energy.

According to new research, sugarcane and nepiegrass could be two of the most promising candidates for biofuel production due to their ability to isolate more carbon dioxide in the soil than is lost in the atmosphere.

Sugarcane and nepiegrass both have large carbon-storing root biomass that can offset the carbon dioxide emitted during cultivation. To test this, researchers observed these plants in Hawaii over a two year period, measuring both the above- and below-ground biomass and resulting greenhouse gas flux.

(more…)

Static Electricity’s Tiny Sparks

By: Sebastian Deffner, University of Maryland, Baltimore County

Static electricityStatic electricity is a ubiquitous part of everyday life. It’s all around us, sometimes funny and obvious, as when it makes your hair stand on end, sometimes hidden and useful, as when harnessed by the electronics in your cellphone. The dry winter months are high season for an annoying downside of static electricity – electric discharges like tiny lightning zaps whenever you touch door knobs or warm blankets fresh from the clothes dryer.

Static electricity is one of the oldest scientific phenomena people observed and described. Greek philosopher Thales of Miletus made the first account; in his sixth century B.C. writings, he noted that if amber was rubbed hard enough, small dust particles will start sticking to it. Three hundred years later, Theophrastus followed up on Thales’ experiments by rubbing various kinds of stone and also observed the “power of attraction.” But neither of these natural philosophers found a satisfactory explanation for what they saw.

It took almost 2,000 more years before the English word “electricity” was first coined, based on the Latin “electricus,” meaning “like amber.” Some of the most famous experiments were conducted by Benjamin Franklin in his quest to understand the underlying mechanism of electricity – which is one of the reasons why his face smiles from the US$100 bill. People quickly recognized electricity’s potential usefulness.

Of course, in the 18th century people mostly made use of static electricity in magic tricks and other performances. For instance, Stephen Gray‘s “flying boy experiment” became a popular public demonstration: He’d use a Leyden jar to charge up the youth, suspended from silk cords, and then show how he could turn book pages via static electricity, or lift small objects just using the static attraction.

(more…)

Editors' Choice

An Editors’ Choice article is a special designation applied by the Journals’ Editorial Board to any article type. Editors’ Choice articles are transformative and represent a substantial advance or discovery, either experimental or theoretical. The work must show a new direction, a new concept, a new way of doing something, a new interpretation, or a new field, and not merely preliminary data.

Two Editors’ Choice articles were published in the Journal of The Electrochemical Society (JES) in December 2016.

(more…)