Remembering Harry Kroto

Harry KrotoA giant among giants

Harry Kroto, distinguished chemist and pioneering nanocarbons researcher, passed away on April 30, 2016 at the age of 76. Kroto, a giant among giants, made an immense impact not only on ECS and its scientific discipline – but the world at large.

“Harry Kroto’s passing is a great loss to science and society as a whole,” says Bruce Weisman, professor at Rice University and division chair of the ECS Nanocarbons Division. “He was an exceptional researcher whose 1985 work with Rick Smalley and Bob Curl launched the field of nanocarbons research and nanotechnology.”

Revolutionizing chemistry

That work conducted by Kroto, Smalley, and Curl yielded the discovery of the C60 structure that became known as the buckminsterfullerene (or the “buckyball” for short). Prior to this breakthrough, there were only two known forms of pure carbon: graphite and diamond. The work opened a new branch in chemistry with unbound possibilities, earning the scientists the 1996 Nobel Prize in Chemistry.

The field of nanocarbons and fullerenes, since the discovery by Kroto and company, has evolved into an area with almost limitless potential. The applications for this scientific discipline are wide-ranging – from energy harvesting to sensing and biosensing to biomedical applications and far beyond. Research in this field continues to fill the pages of scholarly journals, making possible innovations that were not even conceived before the seminal 1985 work.

(more…)

Making Music through Tesla Coils

Musicians ArcAttack are bringing new meaning to the genre of electronic music with their rendition of Europe’s “Final Countdown” rendered through the hums of the infamous Tesla coils.

In order to produce the fury of sound and electricity, the band rigged their instruments to the frequencies of electrical current coursing through the coils. The resulting sparks can cause vibrations through the air at predetermined frequencies.

Texting while walkingSmartphones are amazing little bundles of electrochemistry. From the sensors that pick up your touch and analyze your voice to the battery that is small and powerful enough to provide enough power to run applications on demand – the innovative science behind smartphones has changed the lives of people around the world.

But sometimes those changes are not completely positive. With increased dependence on smartphones, many people now roam the sidewalk with their nose buried in their phones. According to The Wall Street Journal, the number of distracted pedestrians using cellphones is up 124 percent from 2010. Some researchers are even blaming portable electronic gadgets for 10 percent of pedestrian injuries and a half-dozen deaths each year.

In Germany, these distracted pedestrians have been deemed “sombies,” or “smartphone zombies.” And the German government isn’t just looking to throw out a new buzzword, they’re also seeking to solve this issue.

According to reports from The Local, the city of Augsburg recently installed rows of LED lights into the sidewalk that can sense when distracted pedestrians are approaching and give off a bright flash of red to warn them to not mindlessly wander into the street.

“We realized that the normal traffic light isn’t in the line of sight of many pedestrians these days,” said Tobias Harms of the Augsburg city administration in an interview with The Augsburger Allgemeine. “So we decided to have an additional set of lights – the more we have, the more people are likely to notice them.”

arpa-eThe U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) has recently announced up to $30 million in funding for a new program that focuses on renewable energy to convert air and water into cost-competitive liquid fuels.

The program, titled Renewable Energy to Fuels through Utilization of Energy-dense Liquids (REFUEL), is aimed at developing technologies that use renewable energy to convert air and water into carbon neutral liquid fuels – which can be converted into hydrogen or electricity to provide power for sustainable transportation.

The majority of vehicles in the transportation sector depend on liquid fuels such as gasoline or diesel to operate. While liquid fuels are energy dense and can be stored for a long period of time, liquid fossil fuels emit significant amounts of carbon dioxide into the environment. These emissions account for over 20 percent of the U.S.’s total greenhouse gas emissions and contribute to the overall effects of climate change.

(more…)

Wasted Food is Wasted Energy

When we discuss energy, we usually talk about how to harness it or how to store it. But what about conserving the energy we’re wasting every day?

A recent study out of the University of Texas uncovered just how much energy we’re wasting through the excessive waste of food. For every four meals that make their way to our plates, an equivalent of one to two is discarded. When examining the energy used to grow, irrigate, fertilize, and transport that food — the amount of energy wasted begins to add up. Watch the video.

food-video

Open Access: Cost vs. Value

openaccessroundWhether you’re looking at the transformation of scholarly publications or the overall conversation across the globe, it’s clear to see that open access is picking up steam nearly everywhere. In a recent article from Thomson Reuters, the firm takes a deeper look at the move toward open access and its implications.

Cost of open access

Like any publishing model, open access is not without its costs and values. In a traditional open access model, the burden of the cost falls back, in part, on the researcher. Because publishers are not earning subscription fees and individuals no longer have to purchase articles, the author takes on some of the cost of publishing and copy editing.

However, Reuters points out that it is pretty common for publications that are truly dedicated to open access to make affordable those costs to people who may typically not be able to afford it (i.e. waiving fess or article processing credits).

Academic and societal value

In contrast to the cost, the value of open access publications is felt on both an academic and societal level.

For researchers, open access allows scientists to get their findings published faster. By getting the data disseminated faster, researchers can get more citations and begin to connect the dots between the science and our everyday lives.

(more…)

Improving Energy Storage

Nanoparticles have been central to many recent developments, including computing, communications, energy, and biology. However, because nanoparticles are hard to observe, it’s often difficult to pick the best shapes and sizes to perform specific tasks at optimal capacity.

That may be a problem no longer thanks to research out of Stanford University, where researchers gazed inside phase-changing nanoparticles for the first time – allowing them to understand how shape and crystallinity can have dramatic effects on performance.

Practically, this means that the design of energy storage materials could begin to change.

Take the lithium-ion battery, which stores and releases energy due to the electrode’s ability to sustain large deformations over several charge and discharge cycles without degrading. By nanosizing the electrode, researchers recently improved upon the efficiency process.

(more…)

IEEEEndowed by the Dow Chemical Company Foundation to recognize significant advances in industrial electrochemistry, the IEEE Division New Electrochemical Technology (NET) Award is the only award within the ECS Honors & Awards Program presented to an organization. The purpose of the award is to promote high quality applied electrochemical research and development and is intended to highlight novel electrochemical technology which has been practiced at a commercial scale.

Apply today!
Deadline: June 15, 2016

IEEE NET Award consists of a commemorative plaque (for up to 6 key contributors). The Award will be presented at the annual IEEE Division business luncheon and the winners will be asked to present a paper on the technology development during a Division-sponsored symposium. Recipients may receive travel assistance in order to attend the designated meeting. Organizations are encouraged to self-nominate and re-application is allowed.

(more…)

Posted in Awards, Programs
Tagged , ,
Reginald Penner

Reginald Penner (pictured) and doctoral candidate developed a nanowire-based batter that can be charged hundreds of thousands of times.
Image: Daniel A. Anderson/UC Irvine

Researchers at the University of California, Irvine may have just developed the ever-lasting battery.

A recent study, published in ACS Energy Letters, details a nanowire-based battery material that can be recharged hundreds of thousands of times – making more realistic the idea of a battery that would never need to be replaced.

Potential applications for the battery range from computers and smartphones to cars and spacecrafts.

Highly-conductive nanowires have always been thought appropriate for battery design, but were held back by the fact that their fragility causes them to breakdown after multiple charging cycles. By coating a gold nanowire in a manganese dioxide shell and encasing the assembly in an electrolyte, the researchers have turn the frail structure into something that has almost infinite recharging capabilities.

Mya Le Thai, a doctoral candidate, led the charge on the research – cycling the tested electrode up to 200,000 times over a three month period without loss of capacity or damage to the nanowire.

“Mya was playing around, and she coated this whole thing with a very thin gel layer and started to cycle it. She discovered that just by using this gel, she could cycle it hundreds of thousands of times without losing any capacity,” said Reginald M. Penner, chair of UC Irvine’s chemistry department and ECS member. “That was crazy, because these things typically die in dramatic fashion after 5,000 or 6,000 or 7,000 cycles at most.”

Thai believes that this study shows that nanowire-based batteries could be commercially viable, and potentially the next big break in battery technology.

ECS Munich Student Chapter

Attendees of the 1st ECS Student Chapter Munich Symposium at the entrance of the TUM IAS building. TUM is the top academic institution by student ECS membership!

Student membership is fundamental to ECS. Without student members—its inquisitive, innovative minds—the ECS would not be the thriving organization it is today.

The ECS has put down roots in academic institutions around the world that grow each and every day. ECS staff recently analyzed membership data to determine which academic institutions had the greatest presence based upon student ECS membership.

The chart below lists the top 40 academic institutions based upon student ECS membership.

Note: This analysis recognizes only student ECS members in good standing. Expired members were not taken into account.

Check out the chart to find out if your institution made the list!

(more…)