Are You Using the Right Words and Phrases?

Logan Streu, ECS Content Associate & Assistant to the CCO, recently came across a video that takes a close (albeit funny) look at the misleading or misused words frequently used in scientific research.

Is “scientific proof” an oxymoron? Is there really a gene for everything? Check out the video below to see some of the phrases that are often misused.

Want more science videos? Check out our YouTube channel!

Solving the Beach Explosion Mystery

hydrogenRecently, a small explosion occurred underneath the sand at a Rhode Island beach. When state police and a bomb squad couldn’t figure out what caused the blast, researchers from the University of Rhode Island decided to make an attempt at solving the mystery.

The school’s oceanography interdisciplinary team—made up of researchers with expertise in everything from geology to chemistry—was able to pinpoint an unlikely culprit in the beach explosion: hydrogen.

An Unlikely Investigation

The researchers first began to suspect hydrogen when they discovered an underground uncorroded copper cable at the site, which could create hydrogen though an electrochemical process.

“The copper was like a shiny new penny, and the steel was silvery, even though it had been in seawater for many years,” said Professor Arthur Spivack of the University of Rhode Island. “That told me that it was consistent with there being a slight negative voltage in that end of the cable, which protects it from corroding but also could produce hydrogen.”

(more…)

Nano Chip Gives New Insights into Fuel Cells

specA tiny chip may be the answer to the wide-spread utilization of fuel cells.

A team of researchers from UCLA have developed a nanoelectronic chip that can accurately analyze the chemical reactions that allow fuels cells and batteries to function. The new chip effectively evaluates at the nano level how nanocatalysts convert chemical reactions into electricity.

New Insights About Fuel Cells

Essentially, the chip scales down spectroscopy—doing what a large laboratory would typically do, only more effectively and with the ability to collect new data.

This from UCLA:

Being able to analyze these reactions with increased accuracy, heightened sensitivity and greater cost-effectiveness will vastly improve scientists’ understanding of nanocatalysts, which will enable the development of new environmentally friendly fuel cells that are more efficient, more durable and less expensive to produce. Eventually, those new fuel cells could be used to power vehicles that run on hydrogen, the 10th most abundant element on Earth, and give off water as exhaust.

(more…)

Latest in Flexible Technology

Thanks to a development in OLED (organic light-emitting diode) technology by LG, we can now roll up our television screens like a newspaper.

LG recently unveiled their new 18-inch television panels, which are so flexible they can be rolled up to 3-centemeters without affecting the display or functionality.

The company achieved this through innovation in OLED technology, which allows for thinner, lighter, and more flexible screens. This technology is also lending itself to the second screen LG unveiled, which is nearly transparent.

But why would you want to roll up your television screen? Well, you probably wouldn’t. However, the bendable nature of the panels makes the screens virtually unbreakable and give them the ability to curve to walls to make your viewing experience more aesthetically pleasing.

“LG Display pioneered the OLED TV market and is now leading the next-generation applied OLED technology,” In-Byung Kang, LG Display’s senior vice president and head of the R&D Center, said in a statement. “We are confident that by 2017, we will successfully develop an Ultra HD flexible and transparent OLED panel of more than 60 inches, which will have transmittance of more than 40 percent and a curvature radius of 100R, thereby leading the future display market.”

Update: Making Poop Potable (Video)

gates-singalIn early January, we talked about Bill Gates’ initiative to make poop potable. As part of the Bill & Melinda Gates Foundation’s mission to improve sanitation in underdeveloped countries, the business magnate and philanthropist took a sip of water that had been human waste just moments before.

The waste was being filtered through a treatment plant called the OmniProcessor. The plant was designed a part of the Gates Foundation’s Reinvent the Toilet Challenge. Along with being able to make wastewater drinkable, the plant also produce usable electricity.

A Test Run in Africa

Now, the OminProcessor is going from its testing stages to real world application. The plant has taken its first trip to Dakar, Senegal, and while the technology is working, the real world is proving to pose some other challenges.

(more…)

High-Density Storage, 100 Times Less Energy

Tired of your electronics running out of memory? Rice University’s James Tour and his group of researchers have developed a solid state memory technology that allows for high-density storage while requiring 100 times less energy than traditional designs to operate.

The memory technology has been developed via tantalum oxide, a common insulator in electronics.

This from Futurity:

The discovery by the Rice University lab of chemist James Tour could allow for crossbar array memories that store up to 162 gigabits, much higher than other oxide-based memory systems under investigation by scientists. (Eight bits equal one byte; a 162-gigabit unit would store about 20 gigabytes of information.)

Read the full release here.

James Tour—a past ECS lecturer and pioneer in molecular electronics— and his group at Rice University’s Smalley Institute of Nanoscale Science & Technology are constantly demonstrating the interdisciplinary nature of nano science, and this is no exception. From the development of flexible supercapacitors to using cobalt films for clean fuel production, Tour and his lab are exploring many practical applications where chemistry and nano science intersect.

(more…)

Pulse Check

EstherTakeuchi09

Esther S. Takeuchi, past President of ECS and key contributor to the battery system that is still used to power life-saving implantable cardiac defibrillators

As a membership and development intern, my responsibilities include the organizing and electronic conversion of paper membership documents as ECS makes the transition from file cabinets to e-file folders. While going through the archive of members my heart skipped a beat, so to speak, as I read the profile of Esther S. Takeuchi. There are countless articles and information about Dr. Takeuchi, so I won’t press you with too many of her accolades. While being a member ECS and under the funding of Wilson Greatbatch she developed the Li/SVO (silvervanadium oxide) battery that powers the majority of the world’s lifesaving cardiac defibrillators.

Among the many members of ECS, Dr. Takeuchi stood out to me due in part to her humble beginnings. Despite her origin she accomplished momentous feats that impacted millions of lives. Energy Technologies Area states, “Dr.Takeuchi has been credited with holding more patents (currently over 140) than any other living woman.” Dr. Takeuchi’s continued membership with ECS helps promote and encourage the retention of current members within the Society, and may also attract new members who believe in the importance of this line of work. It’s a true benefit for society that members like Esther S. Takeuchi present their work to the world so that we can all benefit from it.

Let’s see how your heart is doing. Take your first two fingers (not your thumb) to press lightly over the blood vessels on your wrist. Count your pulse for 10 seconds and multiply by 6 to find your beats per minute. According to WebMD, the normal resting heart rate for a healthy adult ranges from 50-70 bpm. However for people with an irregular heart rhythm, commonly known as arrhythmia, this count may be off as your heart could be beating too quickly, too slowly, or otherwise abnormally. For serious cases, an implantable defibrillator or pacemaker is implanted into the chest or abdomen to help regulate and effectively shock the heart back into a normal rhythm again. If an electrical device needs to be placed inside of a living body, it had better work, not leak, and last for a very long time. Innovative, revolutionary, and life-changing are just a few thoughts that come to mind when realizing the type of contributions members like Dr. Takeuchi make to not only keep the passion beating in the hearts of ECS members, but the rest of the world as well. Check out the her video interview with ECS, or download it as a podcast, to learn more about Dr.Takeuchi’s innovative and monumental work.

[Image: State University of New York at Buffalo]

Potatoes are great in many forms: mashed, baked, roasted, electrochemical energy source… Most people have seen or experienced the potato battery experiment in a chemistry class, but BatteryBox is taking this exercise to a whole new level.

As you know, one or two potatoes produce enough energy to power a small digital clock. But how much energy would 110 pound of potatoes produce? Enough to charge a smartphone?


For this experiment, the team at BatteryBox cut up and boiled the potatoes to increase the energy transfer. This allows for the harnessing of the full power of the potato.

Essentially, the team combined the 110 pounds of potatoes to create a galvanic cell.

PS: Check out some more practical applications of electrochemical energy at the 228th ECS Meeting.

printablelii

The batteries have the ability to be integrated into the surface of the objects, making it seem like seem like there is no battery at all.

A new development out of the Ulsan National Institute of Science and Technology (UNIST) has yielded a new technique that could make it possible to print batteries on any surface.

With recent interests in flexible electronics—such as bendable screen displays—researchers globally have been investing research efforts into developing printable functional materials for both electronic and energy applications. With this, many researchers predict the future of the li-ion battery as one with far less size and shape restrictions, having the ability to be printed in its entirety anywhere.

The research team from UNIST, led by ECS member Sang-Young Lee, is setting that prediction on the track to reality. Their new paper published in the journal Nano Letters details the printable li-ion battery that can exist on almost any surface.

(more…)

ECS Book Sale! (EXTENDED)

ecstECS is excited to announce a Book Sale, running now through Monday, September 7, 2015!

All in-stock Proceedings Volumes and many older issues of ECS Transactions are now on sale for the one-time price of $25 per title, plus shipping and handling.

This sale is for all in-stock Proceedings Volumes and for all in-stock, hard-copy issues of ECST that were published from 2005 through 2010. With almost 300 discounted titles, this is a clearance sale not to be missed!

Please see the linked PDF for available titles and instructions on ordering or go directly to the ECS Bookstore.

Quantities are very limited, so order today and save!

Also, please visit the Chicago page for the newest issues of ECST!

Posted in Publications