New Research Could Lead to Better LEDs

Research and improvements in LED technology have impacted everything from television screens to life-changing electronic vision. With the vast potential of LED technology, scientists are looking to improve the efficiency of LEDs as well as simplify the manufacturing process.

A team at the California Nanosystems Institute at UCLA is focusing on the science of electroluminescence to accomplish this by demonstrating this process from multilayer molybdenum disulfide.

In the new study, UCLA’s Xianfeng Duan was able to show that the multilayer molybdenum disulfide—the relatively cheap and easy to produce material—can, contrary to popular belief, show strong luminescence qualities when electrical current passes through.

Prior to focusing his attention on building better LEDs, Duan focused his research efforts on topics such as graphene’s applications in transistors and applying nanoscale materials to solar energy efforts.

(more…)

10 New Job Postings in Electrochemistry

wordle 10ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid state science. Check out the latest openings that have been added to the board.

P.S. Employers can post open positions for free!

Staff Scientists/Engineers
Giner, Inc. – Auburndale, MA
The Staff Scientist/Staff Engineer candidates should have a bachelor’s degree in engineering, physics or chemistry. Laboratory experience from internships, summer positions and/or coursework is necessary. Candidates with additional experience could be considered at the Project Scientist/Project Engineer level.

Project/Senior Scientist
Giner, Inc. – Auburndale, MA
The Project/Senior Scientist will research, develop and scale up nanostructured catalysts and electrodes for fuel cells, electrolyzers, and batteries. The candidate should have a MS or PhD degree in Chemistry, Materials Science or Chemical Engineering. He or she is expected to have strong experience in the areas of catalyst synthesis and structure characterizations, and electrochemical tests

(more…)

Posted in Announcements
Tagged
The new study also opens the door to identifying other molecules floating in space.Image: NASA/JPL

The new study also opens the door to identifying other molecules floating in space.
Image: NASA/JPL

Buckyballs—or buckminsterfullerenes, named for their structural similarities to the designs of Buckminster Fuller—have just answered the 100-year-old question of odd variations in light coming through interstellar space.

Astronomers once assumed that this cosmic-light was the result of dust or other tiny space detritus, but a team of chemists have now determined that it is actually the result of buckyballs floating around in space.

Though this isn’t the first time that buckyballs were found in far-off locations. In 2010, researchers spotted the first ever buckyballs in space using the Spitzer telescope.

ECS Podcast – “A Word About Nanocarbons”
Listen as some of the world-leading scientists in nanocarbon and fullerene research discuss the monumental role buckyballs have played in science.

However, the spotting in 2010 proved that buckyballs can indeed exist in space, whereas the current buckyball spotting solve a nearly century-long question that has troubled astronomers globally.

(more…)

ECS Masters – Allen J. Bard

“I took to electrochemistry like a fish to water.” -Allen J. Bard

Regarded by many as the “father of modern electrochemistry,” Bard is best known for his work developing the scanning electrochemical microscope, co-discovering electrochemiluminescence, contributing to photoelectrochemistry of semiconductor electrodes, and co-authoring a seminal textbook in the field of electrochemistry.

Bard is considered one of today’s 50 most influential scientists in the world. He joined the Society in 1965 and became an ECS Honorary member in 2013. ECS established the Allen J. Bard Award in 2013 to recognize distinguished contributions to electrochemistry.

You can also listen to Bard’s interview as an audio podcast.

Find the rest of the ECS Masters series on YouTube.

ecs_toyota
The ECS Toyota Young Investigator Fellowship Selection Committee has selected three recipients who will receive $50,000 each for the inaugural fellowships for projects in green energy technology. The winners are Professor Patrick Cappillino, University of Massachusetts Dartmouth; Professor Yogesh (Yogi) Surendranath, Massachusetts Institute of Technology; and Professor David Go, University of Notre Dame

The Electrochemical Society (ECS), in partnership with the Toyota Research Institute of North America (TRINA), a division of Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA), launched the inaugural ECS Toyota Young Investigator Fellowship about six months ago. More than 100 young professors and scholars pursuing innovative electrochemical research in green energy technology responded to ECS’s request for proposals.

“The science of electrochemistry can help provide solutions for daunting challenges, like the need to transition to a less carbon intensive economy,” says ECS Executive Director Roque Calvo. “ECS was thrilled to partner with Toyota on this program and congratulates our three inaugural fellows.”

The ECS Toyota Young Investigator Fellowship aims to encourage young professors and scholars to pursue research in green energy technology that may promote the development of next-generation vehicles capable of utilizing alternative fuels.

(more…)

FCLabs and manufacturers across the globe are pushing forward in an effort to develop a completely clean hydrogen-powered car. Whether it’s through the plotting of more fueling stations or new vehicle prototypes, many manufactures are hoping to bring this concept into reality soon.

However, there is still one very important aspect missing – the science and technology to produce the best and most efficient hydrogen fuel cell.

In ACS Central Science, two teams have independently reported developments in this field that may be able to get us one step closer to a practical hydrogen-powered car.

ICYMI: Listen to our podcast with Subhash C. Singhal, a world-leader in fuel cell research.

The catalysts currently used to produce the proper chemical reaction for hydrogen and oxygen to create energy is currently too expensive or just demands too much energy to be efficient. For this reason, these two teams – led by Yi Cui at Sanford University, and combining the scientific prowess of James Gerken and Shannon Stahl at the University of Wisconsin, Madison – are seeking a new material that could cause the same reaction at a lower price point and higher efficiency.

(more…)

Printable Functional Materials

Potential technical applications of printable functional inks.

The videos and information in this post relate to an ECS Journal of Solid State Science and Technology focus issue called: Printable Functional Materials for Electronics and Energy Applications.

(Read/download the focus issue now. It’s entirely free.)

Printing technologies in an atmospheric environment offer the potential for low-cost and materials-efficient alternatives for manufacturing electronics and energy devices such as luminescent displays, thin-film transistors, sensors, thin-film photovoltaics, fuel cells, capacitors, and batteries. Significant progress has been made in the area of printable functional organic and inorganic materials including conductors, semiconductors, and dielectric and luminescent materials.

These new printable functional materials have and will continue to enable exciting advances in printed electronics and energy devices. Some examples are printed amorphous oxide semiconductors, organic conductors and semiconductors, inorganic semiconductor nanomaterials, silicon, chalcogenide semiconductors, ceramics, metals, intercalation compounds, and carbon-based materials.

A special focus issue of the ECS Journal of Solid State Science and Technology was created about the publication of state-of-the-art efforts that address a variety of approaches to printable functional materials and device. This focus issue, consisting of a total of 15 papers, includes both invited and contributed papers reflecting recent achievements in printable functional materials and devices.

The topics of these papers span several key ECS technical areas, including batteries, sensors, fuel cells, carbon nanostructures and devices, electronic and photonic devices, and display materials, devices, and processing. The overall collection of this focus issue covers an impressive scope from fundamental science and engineering of printing process, ink chemistry and ink conversion processes, printed devices, and characterizations to the future outlook for printable functional materials and devices.

The video below demonstrates Printed Metal Oxide Thin-Film Transistors by J. Gorecki, K. Eyerly, C.-H. Choi, and C.-H. Chang, School of Chemical, Biological and Environmental Engineering, Oregon State University.

Step-by-step explanation of the video:

(more…)

Researchers believe that as work continues in relation to this study, battery technology will accelerate forward.Image: Stony Brook University

Researchers believe that as work continues in relation to this study, battery technology will accelerate forward.
Image: Stony Brook University

A collaborative group of six researchers from Stony Brook University and Brookhaven National Laboratory are using pioneering x-ray techniques to build a better and more efficient battery.

The researchers—four of whom are active ECS members, including Esther Takeuchi, Kenneth Takeuchi, Amy Marschilok, and Kevin Kirshenbaum—have recently published their internal mapping of atomic transformations of the highly conductive silver matrix formation within lithium-based batteries in the journal Science.

(PS: You can find more of these scientists’ cutting-edge research by attending the 228th ECS Meeting in Phoenix, where they will be giving presentations. Also, Esther Takeuchi will be giving a talk at this years Electrochemical Energy Summit.)

This from Stony Brook University:

In a promising lithium-based battery, the formation of a silver matrix transforms a material otherwise plagued by low conductivity. To optimize these multi-metallic batteries—and enhance the flow of electricity—scientists need a way to see where, when, and how these silver, nanoscale “bridges” emerge. In the research paper, the Stony Brook and Brookhaven Lab team successfully mapped this changing atomic architecture and revealed its link to the battery’s rate of discharge. The study shows that a slow discharge rate early in the battery’s life creates a more uniform and expansive conductive network, suggesting new design approaches and optimization techniques.

(more…)

U.S. Begins Utilizing Hydro Power (Video)

The United States has focused the majority of its solar energy efforts on solar and wind power for the grid. For the first time ever, wave power is being utilized in the U.S. to power homes off the coast of Hawaii.

Waves are being turned into electricity through the Azura prototype, which captures the complex motion of waves to more efficiently capture wave movement for better electricity generation.

The device, which was deployed last month, will be monitored for one year to measure effectiveness and efficiency. If all goes as well as researchers predict, a larger version will hit the seas in 2017.

(more…)

The Future of Superconductors

This emerging technology may lead to a theory to guide future engineers.Image: Futurity/Christian Benke

This emerging technology may lead to a theory to guide future engineers.
Image: Futurity/Christian Benke

Researchers from Cornell University are focusing their efforts on developing superconductors that can carry large energy currents, thereby expanding the possible benefits that can be produced by high-temperature superconductors.

In order to coax the superconductors to carry these large currents, researchers have previously bombarded materials with high-energy ion beams. This approach increased the current density carried, but still left the question of what is actually happening in this reaction.

Thanks to the technology of the scanning tunneling microscope (STM), the researchers can now understand what is happening at the atomic level. (German physicist, Gerd Binnig, won the Nobel Prize in Physics in 1986 for the invention of the scanning tunneling microscope He gave the ECS Lecture at the 203rd ECS Meeting in Paris, France.)

(more…)