Wind- and Solar-Powered Car Created from Scraps

Casey Emilius, ECS’s Meetings Coordinator, spotted an article in Inhabitat on an amazing feat in student ingenuity out of Nigeria.

College student Segun Oyeyiola has transformed a Volkswagen Beetle into a wind- and solar- powered car with just $6,000. By using mostly scrap parts donated by friends and family, Oyeyiola was able to keep costs down and skyrocket the renewable efficiency of the car.

The car is fortified by a strong suspension system to hold the weight of the solar panel on the roof and the wind turbine under the hood – which takes advantage of the airflow produced by the car while it’s in motion.

(more…)

Is Solar Cheaper than Grid Electricity?

Q3_2014_Price_per_kilowatt_hour_by_RegionIf you haven’t embraced solar energy yet, it may be about time to do so. After all, it is cheaper than grid energy in 42 of the 50 largest cities in the United States.

According to the study “Going Solar in America: Ranking Solar’s Value in America’s Largest Cities,” a fully financed solar system costs less than residential grid energy purchased in over 80 percent of the largest U.S. cities. Additionally, 9.1 million single-family homeowners live in a place where their utility bill outpaces what solar would cost.

The falling cost of solar panels and solar fuel cells is largely driven by, in part, research into new materials and developments in the sciences. Check out a few interesting reads on solar energy from the ECS Digital Library:

(more…)

Transforming Graphene from 2D to 3D

The researchers are also investigating the textured graphene surfaces for 3D sensor applications.Image: Nano Letters

The researchers are also investigating the textured graphene surfaces for 3D sensor applications.
Image: Nano Letters

The infamous wonder material is becoming even more wonderful with this new development from the University of Illinois at Urbana-Champaign (UIUC).

Scientist from UIUC have developed a novel process to transform flat graphene from 2D to 3D with a simple and commercially available single-step process. The process uses thermally activated shape-memory polymer substrates to texture the graphene and “crumple” it to give it an increased surface space.

With the easy of this process and the increased surface space of the material, there is a potential for electronics and biomaterials to advance at a much faster rate.

(more…)

The Image at the Center of the Climate Debate

hockeystickFor the past several years, there has been one image that has been central to the climate change debate: the infamous “hockey stick” graph.

Since the graph appeared in the paper “Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitation,” Michael Mann has been hard at work defending his research.

“The hockey stick graph became a central icon in the climate wars,” Mann said at the Feb. 11 meeting of the American Association for the Advancement of Science. “The graph took on a life of its own.”

The graph gained notoriety when the Intergovernmental Panel on Climate Change published the image and starting using it to drive home the message of climate change. The graph still remains an ever-present part of the climate debates.

(more…)

The Solar Breakthrough

wood_mackenzieCountries around the world have been embracing solar energy with open arms – just take a look at Germany or Switzerland. In the United States, however, solar energy has made its way into the mainstream, but has not gone as far as many environmentalists would like. With the advances in drilling technology in the U.S., one is left to wonder what the next big breakthrough in the nation’s energy supply will be.

The Wood Mackenzie consultant agency out of Scotland believes the next big thing in energy in the U.S. will be solar, and they’ve got some pretty solid reasons.

(more…)

Using human skin as one of its charge-collectors, a new flexible generator converts muscle movements into enough power for small electronics.Image: National University of Singapore

Using human skin as one of its charge-collectors, a new flexible generator converts muscle movements into enough power for small electronics.
Image: National University of Singapore

A new discovery from the National University of Singapore has yielded a material that could be used to create battery-free, wearable sensors to power your electronics from the energy generated via muscle movement.

The sensor, which is the size of a postage stamp, uses human skin as one of its charge-collectors. The device takes advantage of static electricity to convert mechanical energy into electricity. It is powered by the wear’s daily activities such as walking, talking, or simply holding an object.

This from IEEE Spectrum:

They tested the device by attaching it to a subject’s forearm or throat, nanopillar side down. Fist-clenching and speaking produced 7.3V and 7.5V respectively. The researchers tested the device as a human motion/activity sensor by attaching it on the forearm and measuring the pulse generated due to holding and releasing of an object.

(more…)

Making Solar Wallpaper

Design freedom improves the range of applications of the panels on the surfaces of interior and exterior building spaces.Image: Antti Veijola

Design freedom improves the range of applications of the panels on the surfaces of interior and exterior building spaces.
Image: Antti Veijola

We’ve been talking about climate change and green energy for a while now, so of course we think solar panels should exist wherever light is. Now, that could mean using solar wallpaper to harvest as much energy as possible.

VTT Technical Research Centre of Finland has developed and utilized a mass production method based on printing technologies that will allow the manufacturing of decorative, organic solar panels for use on the surfaces of interior and exterior building spaces.

The new organic photovoltaic panels are only 0.2 mm thick each and include the electrodes and polymer layers where the light is collected.

(more…)

Electrochemistry Lights the Super Bowl

University of Phoenix Stadium

Site of Super Bowl XLIX

After the football teams and fans have left the stadium, after the television crews have wrapped up their interviews for the night, the stadium remains a-glow. This is the first time ever that a Super Bowl stadium has shone so brightly and with such an eye toward the environment.

According to takepart.com,

Sunday’s game between the New England Patriots and the Seattle Seahawks marks the first Super Bowl illuminated by LED lights, which boast an estimated 75 percent reduction in power and nearly double the glow of traditional metal halides—like the ones previously installed at the Phoenix, Arizona, stadium when it was built in 2006.

The stadium’s new set of 312 LED fixtures only need about 310,000 watts of power, compared with the 1.24 million watts of power required by the 780 metal halide bulbs.”

With this massive change over from traditional bulbs to LED lights, stadiums like the one in Phoenix and other around the country will have made significant strides toward green energy and hopefully LEED certification.

To learn more about LED lighting, check out our Digital Library.

An Ever-Present Light (Bulb)

Centinnial Light Bulb

Lynn Owens, former chairman of the Centennial Light Bulb

Since 1901, just a year before The Electrochemical Society was founded, a light bulb was installed to bring light into a firehouse in Livermore, California. Back then, if a call came in for the firemen at night, they would have to dress, assemble their gear, and organize the hand water-trucks (no motorized firetrucks yet) in the dark. By adding what we now consider the simple light bulb, a fire station was much more readily able to handle emergencies. And that light bulb, now more than 113 years old, is still burning today.

This incandescent light bulb, invented by Adolphe A. Chaillet, was produced by the Shelby Electric Company. Originally giving off a glowing 60 watts, it now burns steadily at 4 watts. It has been moved several times, most recently in 1976, as the Livermore-Pleasanton Fire Department has changed locations.

“According to a website dedicated to the bulb, Debora Katz, a physicist at the US Naval Academy in Annapolis, Md., has conducted extensive research into the Livermore light bulb’s physical properties, using a vintage light bulb from Shelby Electric Co. that is a near replica of the Livermore light.

“The Livermore light bulb differs from a contemporary incandescent bulb in two ways,” says Katz. “First its filament is about eight times thicker than a contemporary bulb. Second, the filament is a semiconductor, most likely made of carbon.”

Watch the live webcam here to see the longest-burning light bulb in the world.

Listen to the 99% Invisible podcast for an in-depth look at the bulb.

Learn more about light bulbs in the ECS Digital Library.

Safer, Thinner Lithium Rechargeables

New technology developed by researchers at the University of Michigan has been designed with the intention of preventing fires caused by lithium-ion battery malfunctions.

Researchers are making this possible by creating an advanced barrier between the electrodes in the lithium-ion battery. The barrier is made with nanofibers extracted from Kevlar – the material known for its use in bulletproof vests. The Kevlar nanofibers stifle the growth of metal tendrils that can become unwanted pathways for electrical current.

“Unlike other ultra strong material such as carbon nanotubes, Kevlar is an insulator,” said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering. “This property is perfect for separators that need to prevent shorting between two electrodes.”

Short-circuiting happens in these batteries when holes in the membranes are too big and dendrites poke through to the membrane. They create a path for electrons within the battery, shorting it out.

(more…)