The Science of Distilling

One brave man is distilling his own potent, yet drinkable, biofuel. Of course, there’s quite a bit of electrochemistry involved via this reflux still.

WARNING: Distilling alcohol is illegal in many places. (It can also be pretty dangerous for the novice distiller, so let’s leave this one to Hackett.)

The Real Science of an Alkali Metal Explosion

You may remember the classic alkali metal explosion demonstration in one of your early chemistry classes. Many educators use this experiment to show the volatile power of chemistry. The thought was that the unstable reaction was caused by the ignition of hydrogen gas, but scientists in the Czech Republic have found new information behind this classic demonstration by using high-speed video.

The researchers began investigating the science behind this experiment by dropping a sodium-potassium alloy droplet into water. From there, they recorded the explosion with a high-speed camera that is capable of capturing 10,000 frames per second.

Of course, there’s a video.

(more…)

Modeling Corrosion, Atom by Atom

corrosion_atom_by_atomAn article by Christopher D. Taylor in the latest issue of Interface.

In the late 20th century, computer programs emerged that could solve the fundamental quantum mechanical equations that control the interactions of atoms that give rise to bonding. These tools, first applied to molecules and bulk solid materials, then began to be applied to surfaces and, in the early 21st century, to electrochemical environments. Commercial and open-source programs are now readily available and can be used on both desktop and high-performance computing platforms to solve for the electronic structure of a given configuration of atomic centers (nuclei) and, in so doing, provide the basis for determining a whole host of properties, including electronic and vibrational spectra, electrical moments such as the system dipole, and, most importantly, the energy and forces on the atoms. Other derived properties include the extent to which each atom is charged and bond-orders, although to compute these latter properties one of a variety of methods for dividing up and quantifying the electron density associated with each atom must be selected.

The physics behind these codes is complex, and, challengingly, has no rigorous analytical solution that can be obtained within a finite allotment of time. Thus, the computer programs themselves take advantage of approximations that allow for a feasible solution but, at the same time, constrain the accuracy of the result. Nonetheless, solutions can usually be reliably obtained for model systems representing materials, interfaces, or molecules that do not exceed thousands, and, more realistically, hundreds of atoms. Given that system sizes of hundreds or thousands of atoms amount to no more than the smallest nanoparticle of a substance, the question arises: What can atomistic simulations teach us about corrosion?

Read the rest.

This Day in Electrochemistry – Electric Lamp

On January 27, 1880, Thomas Edison received the historic patent embodying the principals of his incandescent lamp that paved the way for the universal domestic use of electric light.Image:Government Documents

On January 27, 1880, Thomas Edison received the historic patent embodying the principals of his incandescent lamp that paved the way for the universal domestic use of electric light.
Image: Government Documents

On this very day in the year 1880, Thomas Edison was granted a patent for the electric lamp, which gave light by incandescence.

While the first electric carbon arc lamp was invented by Sir Humphrey Davey of England in 1801, it wasn’t until Edison’s discovery in 1880 that we got the longer lasting electric lamp that changed the way we live.

Edison was one of the original members of The Electrochemical Society, joining the organization in 1903 – just one year after it was established. Early members such as Charles Burgess recall attending ECS meetings at Edison’s home in the early days of the Society.

On his years of research in developing the electric light blub, Edison was quoted in “Talks with Edison” by George Parsons Lathrop in Harpers magazine on February of 1890. He had this to say:

“During all those years of experimentation and research, I never once made a discovery. All my work was deductive, and the results I achieved were those of invention, pure and simple.”

Since the Thomas Edison’s days in the Society, ECS has been working to promote technological innovation and inspire scientists from around the world. Join some of the greatest scientific minds in electrochemical and solid state science and technology by becoming a member today!

Everybody Writes, Nobody Reads

May it be then a reward to all the Interface authors to know that there is a crowd of people who read their work.

May it be then a reward to all the Interface authors to know that there is a crowd of people who read their work.

An article by Interface Co-Editor Petr Vanysek in the latest issue of the publication.

I am happy to report that people read Interface magazine. Just the other day I received a long letter commenting on the usefulness of the topical articles, this one specifically detailing the issue dealing with ionic liquids. The message of the letter was that the reviews in Interface are just as useful as the summary articles in peer-reviewed publications. Another reader, reacting to the side remark I made in my recent editorial about opening a dog kennel, wanted to unload his German shepherds on me. Yet another letter mentioned the Classics column and how nice it was to read recollections about scientists, written by other scientists and colleagues.

Interface does not have an officially gauged impact factor and we do not have a good measure of how well and thoroughly this magazine is read. Still, we like to hear that it is a useful medium for the members, the advertisers, and anybody else who may follow what shows up in our quarterly.

(more…)

Member Spotlight – Alireza Mahdavifar

ECS student member Alireza Mahdavifar observes live bacteria moving inside the microfluidic channel.Image: Georgia Tech/The Poultry Site

ECS student member Alireza Mahdavifar observes live bacteria moving inside the microfluidic channel.
Image: Georgia Tech/The Poultry Site

Along with a team of researchers out of Georgia Tech, ECS student member Alireza Mahdavifar has designed and fabricated the prototype of a microfluidic device that exploits cell movement to separate live and dead bacteria during food processing.

The research, entitled “A Nitrocellulose-Based Microfluidic Device for Generation of Concentration Gradients and Study of Bacterial Chemotaxis,” has been recently published in the Journal of The Electrochemical Society.

The new development consists of a microfluidic device that exploits cell movement to separate live and dead bacterial during food processing. The device is novel due to the fact that while screening for foodborne pathogens, it can be difficult to distinguish between viable and non-viable bacteria. Mahdavifar and the team out of Georgia Tech responded to this issue by creating a device that can separate live cells from dead ones for real-time pathogen detection.

(more…)

4 New Job Postings in Electrochemistry

Find openings in your area via the ECS job board.

Find openings in your area via the ECS job board.

ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid state science. Check out the latest openings that have been added to the board.

P.S. Employers can post open positions for free!

Post Doc (NIR/EIS)
Irstea – Montpellier, France
This Post Doc is integrated to a binational project, NEXT. The goal of this project is to investigate the in-line and real-time use of novel holistic sludge descriptors to measure, monitor, model and predict sludge behaviour through sludge treatment processes and use this knowledge for the optimization of design and operation of treatment processes. It will lean on previous works developed by two Irstea teams (on the one hand on organic fluids characterisation based on electrical measurements and rheology and on the other hand on near infrared (NIR) spectroscopy on turbid fluids and soils).

(more…)

corrosion_blog_interfaceAn article by Kenji Amaya, Naoki Yoneya, and Yuki Onishi published in the latest issue of Interface.

Protecting structures from corrosion is one of the most important challenges in engineering. Cathodic protection using sacrificial anodes or impressing current from electrodes is applied to many marine structures. Prediction of the corrosion rates of structures and the design of cathodic protection systems have been traditionally based on past experience with a limited number of empirical formulae.

Recently, application of numerical methods such as the boundary element method (BEM) or finite element method (FEM) to corrosion problems has been studied intensively, and these methods have become powerful tools in the study of corrosion problems.

With the progress in numerical simulations, “Inverse Problems” have received a great deal of attention. The “Inverse Problem” is a research methodology pertaining to identifying unknown information from external or indirect observation utilizing a model of the system.

Read the rest.

computer_simulation2An article by N.J. Laycock, D.P. Krouse, S.C. Hendy, and D.E. Williams published in the latest issue of Interface.

Stainless steels and other corrosion resistant alloys are generally protected from the environment by ultra-thin layers of surface oxides, also called passive films. Unfortunately, these films are not perfect and their Achilles’ heel is a propensity to catastrophic local breakdown, which leads to rapid corrosion of the metallic substructure. Aside from the safety and environmental hazards associated with these events, the economic impact is enormous.

In the oil and gas and petrochemical industries, it is of course usually possible to select from experience a corrosion-resistant alloy that will perform acceptably in a given service environment. This knowledge is to a large extent captured in industry or company-specific standards, such as Norsok M1.

However, these selections are typically very conservative because the limits tend to be driven by particular incidents or test results, rather than by fundamental understanding. Decision-making can be very challenging, especially in today’s mega-facilities, where the cost of production downtime is often staggeringly large. Thus significant practical benefits could be gained from reliable quantitative models for pitting corrosion of stainless steels. There have been several attempts to develop purely stochastic models of pitting corrosion.

Read the rest.

“The first meeting that I attended was held in Bridgeport, Connecticut, in 1928. I went with Dr. W. C. Moore, who had previously persuaded me to become a member. I knew immediately that I was interested in the Society. That interest was not due to the papers that I listened to. There was nothing strictly on electro-organic on the program. I believe that it was due to the enthusiasm of the group, and the fact that I was made to feel that I belonged.”
-Sherlock Swann, Jr.

An article by Richard Alkire in the latest issue of Interface.

Electro-organic chemistry had its champion in Sherlock Swann, Jr. His scholarship, especially his massive bibliographic efforts, served singlehandedly to keep alive the promise and spirit of electro-organic chemistry in the U.S. from the 1930s to the 50s.

He was a charter member of the Electro-organic Division of The Electrochemical Society, formed in 1940, and was the first person to hold the offices of Secretary, Vice-Chair, and Chair of that Division. Beginning with his first ECS meeting in 1928 and continuing throughout his life, he played an active role in the Society, including a term as President in 1958-59. He was the Electro-organic Divisional Editor of the Journal of The Electrochemical Society, 1939-59; the Lifetime Honorary Chair of the Chicago Section; and was made an Honorary Member of the Society in 1974.

Swann was born in 1900 in Baltimore, Maryland, where his family had deep roots and a tradition of service to society. His great-grandfather, Thomas Swann, served as governor of Maryland, as mayor of Baltimore, as President of the Baltimore & Ohio Railroad, and was a leading force in the creation of Druid Hill Park, Baltimore’s first large municipal park. His father served as Baltimore police commissioner and subsequently as Postmaster, and led the reconstruction of downtown Baltimore police commissioner and subsequently as Postmaster, and led the reconstruction of downtown Baltimore and its streets after the Great Fire of 1904.

Read the rest.