Fuel CellApplying a tiny coating of costly platinum just 1 nanometer thick—about 1/100,000th the width of a human hair—to a core of much cheaper cobalt could bring down the cost of fuel cells.

This microscopic marriage could become a crucial catalyst in new fuel cells that use generate electricity from hydrogen fuel to power cars and other machines. The new fuel cell design would require far less platinum, a very rare metal that sold for almost $900 an ounce the day this article was produced.

“This technique could accelerate our launch out of the fossil-fuel era,” says Chao Wang, an assistant professor of chemical and biomolecular engineering at Johns Hopkins University and senior author of a study published in the journal Nano Letters.

“It will not only reduce the cost of fuel cells,” Wang says. “It will also improve the energy efficiency and power performance of clean electric vehicles powered by hydrogen.”

(more…)

BatteryNew research from Sandia National Laboratory is moving toward advancing solid state lithium-ion battery performance in small electronics by identifying major obstacles in how lithium ions flow across battery interfaces.

The team of researchers, including ECS member Forrest Gittleson, looked at the nanoscale chemistry of solid state batteries, focusing on the area where the electrodes and electrolytes make contact.

“The underlying goal of the work is to make solid-state batteries more efficient and to improve the interfaces between different materials,” says Farid El Gabaly, coauthor of the recently published work. “In this project, all of the materials are solid; we don’t have a liquid-solid interface like in traditional lithium-ion batteries.”

According to El Gabaly, the faster the lithium can travel from one electrode to the other, the more efficient the batteries could be.

(more…)

A new bendable lithium-ion battery prototype continues delivering electricity even when cut into pieces, submerged in water, or struck with force.

“We are very encouraged by the feedback we are receiving,” says Jeffrey P. Maranchi, manager of the materials science program at the Johns Hopkins Applied Physics Laboratory. “We are not that far away from testing in the field.”

(more…)

Electric VehiclesAs sustainable technologies continue to expand into the marketplace, the demand for better batteries rises. Many researchers in the field are looking toward all-solid-state batteries as a promising venture, citing safety and energy density properties. Now, one company is looking to take that work from the lab to the marketplace.

Electric car maker Fisker has recently filed patents for solid state lithium-ion batteries, stating that mass scale production could begin as soon as 2023. The patent covers novel materials and manufacturing processes that the company plans to use to develop automotive-ready batteries.

Unlike other types of rechargeable batteries that use liquid electrodes and electrolytes, solid state batteries utilize both solid electrodes and solid electrolytes. While liquid electrolytes are efficient in conducting ions, there are certain safety hazards attached (i.e. fires if the battery overheats or is short-circuited). In addition to better safety, solid electrodes could also impact battery cost and energy density, opening up new possibilities for large scale storage applications.

(more…)

BatteryCapitalizing on tiny defects can improve electrodes for lithium-ion batteries, new research suggests.

In a study on lithium transport in battery cathodes, researchers found that a common cathode material for lithium-ion batteries, olivine lithium iron phosphate, releases or takes in lithium ions through a much larger surface area than previously thought.

“We know this material works very well but there’s still much debate about why,” says Ming Tang, an assistant professor of materials science and nanoengineering at Rice University. “In many aspects, this material isn’t supposed to be so good, but somehow it exceeds people’s expectations.”

Part of the reason, Tang says, comes from point defects—atoms misplaced in the crystal lattice—known as antisite defects. Such defects are impossible to completely eliminate in the fabrication process. As it turns out, he says, they make real-world electrode materials behave very differently from perfect crystals.

(more…)

Shirley Meng on Sustainable Power

Our guest on this episode of the ECS Podcast is Shirley Meng, professor of NanoEngineering at the University of California, San Diego. Meng founded the Sustainable Power and Energy Center, the goal of which is solving key technical challenges in distributed energy generation, storage, and power management.

Meng is also the principal investigator of Laboratory for Energy Storage and Conversion research group. Her group is focused on functional nano and micro-scale materials for energy storage and conversion.

She talked to Rob Gerth, ECS’s director of marketing and communications.

Listen to the podcast and download this episode and others for free on Apple Podcasts, SoundCloud, Podbean, or our RSS Feed. You can also find us on Stitcher and Acast.

(more…)

BatteryA new kind of lithium sulfur battery could be more efficient, less expensive, and safer than currently available lithium batteries.

“We demonstrated this method in a coin battery,” says Donghai Wang, associate professor of mechanical engineering at Penn State. “But, I think it could eventually become big enough for cell phones, drones, and even bigger for electric vehicles.”

Lithium sulfur batteries should be a promising candidate for the next generation of rechargeable batteries, but they are not without problems. For lithium, the efficiency in which charge transfers is low, and, lithium batteries tend to grow dendrites—thin branching crystals—when charging that do not disappear when discharged.

The researchers examined a self-formed, flexible hybrid solid-electrolyte interphase layer that is deposited by both organosulfides and organopolysulfides with inorganic lithium salts. The researchers report that the organic sulfur compounds act as plasticizers in the interphase layer and improve the mechanical flexibility and toughness of the layer. The interphase layer allows the lithium to deposit without growing dendrites. The Coulombic efficiency is about 99 percent over 400 recharging discharging cycles.

(more…)

BatteryA new sodium-based battery can store the same amount of energy as a state-of-the-art lithium ion at a substantially lower cost.

As a warming world moves from fossil fuels toward renewable solar and wind energy, industrial forecasts predict an insatiable need for battery farms to store power and provide electricity.

Chemical engineer Zhenan Bao and materials scientists Yi Cui and William Chueh of Stanford University aren’t the first researchers to design a sodium ion battery. But they believe their approach has the price and performance characteristics to create a sodium ion battery that costs less than 80 percent of a lithium ion battery with the same storage capacity.

$150 a ton

“Nothing may ever surpass lithium in performance,” Bao says. “But lithium is so rare and costly that we need to develop high-performance but low-cost batteries based on abundant elements like sodium.”

With materials constituting about one-quarter of a battery’s price, the cost of lithium—about $15,000 a ton to mine and refine—looms large. Researchers say that’s why they are basing the new battery on widely available sodium-based electrode material that costs just $150 a ton.

(more…)

Fuel CellA closer look at catalysts is giving researchers a better sense of how these atom-thick materials produce hydrogen.

Their findings could accelerate the development of 2D materials for energy applications, such as fuel cells.

The researchers’ technique allows them to probe through tiny “windows” created by an electron beam and measure the catalytic activity of molybdenum disulfide, a two-dimensional material that shows promise for applications that use electrocatalysis to extract hydrogen from water.

Initial tests on two variations of the material proved that most production is coming from the thin sheets’ edges.

Researchers already knew the edges of 2D materials are where the catalytic action is, so any information that helps maximize it is valuable, says Jun Lou, a professor of materials science and nanoengineering at Rice University whose lab developed the technique with colleagues at Los Alamos National Laboratory.

(more…)

Renewable gridJust a few months ago, business magnate Elon Musk announced that he would spearhead an effort to build the world’s largest lithium-ion battery in an effort to deliver a grid-scale battery to expand South Australia’s renewable energy supply. Now, reports state that Musk is delivering on his promise, stating that the battery is already half complete.

The battery is set to sustain 100 megawatts of power and store that energy for 129 megawatt hours. That roughly translates to enough energy to power 30,000 homes. On top of this large technological order, Musk stated that if his team could not develop the battery in 100 days or less, it would be free for the Australian transmission company.

“This serves as a great example to the rest of the world of what can be done,” Musk told an audience in Australia, as reported by ABC news. “To have that [construction] done in two months; you can’t remodel your kitchen in that period of time.”

The battery is expected to cost $39 million (USD). The operational deadline, as decided by the Australian government, is December 1, 2017.

  • Page 3 of 12