Fuel CellA closer look at catalysts is giving researchers a better sense of how these atom-thick materials produce hydrogen.

Their findings could accelerate the development of 2D materials for energy applications, such as fuel cells.

The researchers’ technique allows them to probe through tiny “windows” created by an electron beam and measure the catalytic activity of molybdenum disulfide, a two-dimensional material that shows promise for applications that use electrocatalysis to extract hydrogen from water.

Initial tests on two variations of the material proved that most production is coming from the thin sheets’ edges.

Researchers already knew the edges of 2D materials are where the catalytic action is, so any information that helps maximize it is valuable, says Jun Lou, a professor of materials science and nanoengineering at Rice University whose lab developed the technique with colleagues at Los Alamos National Laboratory.

(more…)

Our guest today, James Fenton, is the director of the Florida Solar Energy Center at the University of Central Florida – the nation’s largest and most active state-supported renewable energy and energy efficiency institute.

Fenton is also the current secretary of the ECS Board of Directors.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

(more…)

Researchers have created a way to look inside fuel cells to see the chemical processes that lead them to breakdown.

Fuel cells could someday generate electricity for nearly any device that’s battery-powered, including automobiles, laptops, and cellphones. Typically using hydrogen as fuel and air as an oxidant, fuel cells are cleaner than internal combustion engines because they produce power via electrochemical reactions. Since water is their primary product, they considerably reduce pollution.

The oxidation, or breakdown, of a fuel cell’s central electrolyte membrane can shorten their lifespan. The process leads to formation of holes in the membrane and can ultimately cause a chemical short circuit. Engineers created the new technique to examine the rate at which this oxidation occurs with hopes of finding out how to make fuel cells last longer.

Using fluorescence spectroscopy inside the fuel cell, they are able to probe the formation of the chemicals responsible for the oxidation, namely free radicals, during operation. The technique could be a game changer when it comes to understanding how the cells break down, and designing mitigation strategies that would extend the fuel cell’s lifetime.

“If you buy a device—a car, a cell phone—you want it to last as long as possible,” says Vijay Ramani, professor of environment & energy at the School of Engineering & Applied Science at Washington University in St. Louis.

(more…)

Steven Chu is currently the William R. Kenan, Jr. Professor of Physics & Professor of Molecular & Cellular Physiology at Stanford University. You might know him better as the former U.S. Secretary of Energy, the first scientist to hold a Cabinet position.

He was also the director at the Lawrence Berkeley National Laboratory, Professor of Physics and Molecular Cell Biology at UC Berkeley, and head of the Quantum Electronics Research Department at AT&T Bell Laboratories.

His research includes optical nanoparticle probes and imaging methods for applications in biology and biomedicine and new approaches in lithium ion batteries, air filtration, and other nanotechnology applications.

Along with two colleagues, Chu won the 1997 Nobel Prize in Physics “for development of methods to cool and trap atoms with laser light.”

He is also going to give the ECS Lecture at the 232nd ECS Meeting this fall in National Harbor, Maryland.

Listen to the podcast and download this episode and others for free on Apple Podcasts, SoundCloud, Podbean, or our RSS Feed. You can also find us on Stitcher and Acast.

(more…)

In May 2017 during the 231st ECS Meeting, we sat down with Eric Wachsman, director and William L. Crentz Centennial Chair in Energy Research at the University of Maryland Energy Research Center. The conversation is led by Rob Gerth, ECS’s director of marketing and communications.

Wachsman is an expert in solid oxide fuel cells and other energy storage technologies. He’s the lead organizer of the 7th International Electrochemical Energy Summit, which will take place at the 232nd ECS Meeting in National Harbor, Maryland, October 1st through the 6th. His work in battery safety, water treatment, and clean energy development has gained international attention.

Listen to the podcast and download this episode and others for free on Apple Podcasts, SoundCloud, Podbean, or our RSS Feed. You can also find us on Stitcher and Acast.

(more…)

Solar PanelResearchers have created a concentrating photovoltaic (CPV) system with embedded microtracking that is capable of producing 50 percent more energy per day than the standard silicon solar cells.

“Solar cells used to be expensive, but now they’re getting really cheap,” says Chris Giebink, an assistant professor of electrical engineering at Penn State.

“As a result, the solar cell is no longer the dominant cost of the energy it produces. The majority of the cost increasingly lies in everything else—the inverter, installation labor, permitting fees, etc.—all the stuff we used to neglect,” he says.

This changing economic landscape has put a premium on high efficiency. In contrast to silicon solar panels, which currently dominate the market at 15 to 20 percent efficiency, concentrating photovoltaics focus sunlight onto smaller, but much more efficient solar cells like those used on satellites, to enable overall efficiencies of 35 to 40 percent.

(more…)

EnergyIn an effort to expand South Australia’s renewable energy supply, the state has looked to business magnate Elon Musk to build the world’s largest lithium-ion battery. The goal of the project is to deliver a grid-scale battery with the ability to stabilize intermittency issues in the area as well as reduce energy prices.

An energy grid is the central component of energy generation and usage. By changing the type of energy that powers that grid in moving from fossil fuels toward more renewable sources, the grid itself changes. Traditional electrical grids demand consistency, using fossil fuels to control production for demand. However, renewable sources such as wind and solar provide intermittency issues that traditional fossil fuels do not. Researchers must look at how we can deliver energy to the electrical grid when the sun goes down or the wind stops blowing. This is where energy storage systems, such as batteries, play a pivotal role.

In South Australia, Musk’s battery is intended to sustain 100 megawatts of power and store that energy for 129 megawatt hours. To put it in perspective, that is enough energy to power 30,000 homes and, according to Musk, will be three times as powerful as the world’s current largest lithium-ion battery.

Musk hopes to complete the project by December, stating that “It’s a fundamental efficiency improvement to the power grid, and it’s really quite necessary and quite obvious considering a renewable energy future.”

(more…)

Ultra-low Temperature Batteries

BatteryA new development in electrolyte chemistry, led by ECS member Shirley Meng, is expanding lithium-ion battery performance, allowing devices to operate at temperatures as low as -60° Celsius.

Currently, lithium-ion batteries stop operating around -20° Celsius. By developing an electrolyte that allows the battery to operate at a high efficiency at a much colder temperature, researchers believe it could allow electric vehicles in cold climates to travel further on a single charge. Additionally, the technology could allow battery-powered devices, such as WiFi drones, to function in extreme cold conditions.

(MORE: Read ECS’s interview with Meng, “The Future of Batteries.”)

This from UC San Diego:

The new electrolytes also enable electrochemical capacitors to run as low as -80 degrees Celsius — their current low temperature limit is -40 degrees Celsius. While the technology enables extreme low temperature operation, high performance at room temperature is still maintained. The new electrolyte chemistry could also increase the energy density and improve the safety of lithium batteries and electrochemical capacitors.

(more…)

SolarA newly created material may have the capacity to double the efficiency of solar cells.

Conventional solar cells are at most one-third efficient, a limit known to scientists as the Shockley-Queisser Limit. The new material, a crystalline structure that contains both inorganic materials (iodine and lead) and an organic material (methyl-ammonium), boosts the efficiency so that it can carry two-thirds of the energy from light without losing as much energy to heat.

In less technical terms, this material could double the amount of electricity produced without a significant cost increase, according to the new study in Science.

Enough solar energy reaches the earth to supply all of the planet’s energy needs multiple times over, but capturing that energy has been difficult—as of 2013, only about 1 percent of the world’s grid electricity was produced from solar panels.

The new material, called a hybrid perovskite, would create solar cells thinner than conventional silicon solar cells, and is also flexible, cheap, and easy to make, says Libai Huang, assistant professor of chemistry at Purdue University.

(more…)

EnergyBill Gates is taking climate change head on with his newly formed Breakthrough Energy Ventures fund. Gates is leading the fund along with a network of investors worth $170 billion, including Virgin’s Richard Branson and Amazon’s Jeff Bezos.

BEV will donate more than $1 billion into clean energy innovation projects over the next 20 years, focusing on its goal of reducing greenhouse gas emissions.

“Anything that leads to cheap, clean, reliable energy we’re open-minded to,” Gates says.

This move by Gates comes after his commitment last year to personally invest an additional $1 billion into clean energy.

However, this move will shift Gates away from his home turf of information technology.

“People think you can just put $50 million in and wait two years and then you know what you got,” Gates says. “In this energy space, that’s not true at all.”

A driving force behind the fund is to take innovative new technologies from the lab to the marketplace. Currently, the federal government funds a huge percentage of fundamental research efforts in fields such as energy storage, which are the subsequently commercialized by private investors.

(more…)

  • Page 3 of 5