When the loaves in your breadbox begin to develop a moldy exterior caused by fungi, they tend to find a new home at the bottom of a trash can. However, researchers have recently developed some pretty interesting results that suggest bread mold could be the key to producing more sustainable electrochemical materials for use in rechargeable batteries.

For the first time, researchers were able to show that the fungus Neurospora crassa (better known as the enemy to bread) can transform manganese into mineral composites with promising electrochemical properties.

(MORE: Read the full paper.)

“We have made electrochemically active materials using a fungal manganese biomineralization process,” says Geoffrey Gadd of the University of Dundee in Scotland. “The electrochemical properties of the carbonized fungal biomass-mineral composite were tested in a supercapacitor and a lithium-ion battery, and it [the composite] was found to have excellent electrochemical properties. This system therefore suggests a novel biotechnological method for the preparation of sustainable electrochemical materials.”

This from University of Dundee:

In the new study, Gadd and his colleagues incubated N. crassa in media amended with urea and manganese chloride (MnCl2) and watched what happened. The researchers found that the long branching fungal filaments (or hyphae) became biomineralized and/or enveloped by minerals in various formations. After heat treatment, they were left with a mixture of carbonized biomass and manganese oxides. Further study of those structures show that they have ideal electrochemical properties for use in supercapacitors or lithium-ion batteries.

Read the full article here.

The manganese oxides in the lithium-ion batteries are showing an excellent cycling stability and more than 90 percent capacity after 200 cycles.