Water purificationAccess to adequate water and sanitation is a major obstacle that impacts nations across the globe. Currently 1 in 10 people – or 663 million – lack access to safe water. Due to the global water crisis, more than 1.5 billion people are affected by water-related diseases every year. However, many of those disease causing organisms could be removed from water with hydrogen peroxide, but production and distribution of hydrogen peroxide is a challenge in many parts of the world that struggle with this crisis.

Now, a team of researchers from the U.S. Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have develop a small device that can produce hydrogen peroxide with a little help from renewable energy sources (i.e. conventional solar panels).

“The idea is to develop an electrochemical cell that generates hydrogen peroxide from oxygen and water on site, and then use that hydrogen peroxide in groundwater to oxidize organic contaminants that are harmful for humans to ingest,” says Chris Hahn, a SLAC scientist.

(more…)

BatteryOne of the keys to developing a successful electric vehicle relies on energy storage technology. For an EV to be successful in the marketplace, it must be able to travel longer distances (i.e. over 300 miles on a single charge).

A team of researchers from Georgia Institute of Technology, including ECS fellow Meilin Liu, has recently created a nanofiber that they believe could enable the next generation of rechargeable batteries, and with it, EVs. The recently published research describes the team’s development of double perovskite nanofibers that can be used as highly efficient catalysts in fast oxygen evolution reactions. Improvements in this key process could open new possibilities for metal-air batteries.

“Metal-air batteries, such as those that could power electric vehicles in the future, are able to store a lot of energy in a much smaller space than current batteries,” Liu says. “The problem is that the batteries lack a cost-efficient catalyst to improve their efficiency. This new catalyst will improve that process.”

(more…)

Hitting the 100% Renewable Mark

Las Vegas renewable energyFor the last decade, the city of Las Vegas has been working toward generating 100 percent of its energy from renewable source. Now, city officials state that goal has been met.

About one year ago, the city partnered with the company NV Energy, a public utility that distributes energy across the state of Nevada, to help Las Vegas reach its clean energy goal. NV Energy official recently announced that everything from City Hall to community centers are now running on clean energy after the finalization of Boulder Solar 1.

The Boulder Solar plant was built by California sustainable energy company SunPower. The 100-megawatt solar plant is located in the Eldorado Valley of Boulder City, NV.

Las Vegas’ major, Carolyn Goodman, hopes that this move will but the city on the path to be a “world leader in sustainability.”

Wind TurbinesGoogle is going green.

Tech giant Google announced that it will run entirely on renewable energy in 2017. This will be a huge shift for the company that, according to the New York Times, consumed as much energy as the city of San Francisco in previous years.

Google states that both its data centers and offices will reach the 100 percent renewable energy mark in 2017, with the majority of power derived from wind and solar. According to a press release by the company, going green makes the most sense economically in addition to Google’s goal of reducing its carbon footprint to zero. With wind energy prices down 60 percent and solar down 80 percent over the past six years, Google’s move to renewables will both make an environmental impact and help the company cut operating expenses.

In part, Google is able to make this transition due to the number of large-scale deals the company has made with renewable energy producers over the past few years. Google has guaranteed to purchase energy from renewable start-ups, which then allows those start-ups to obtain the capital necessary to expand their business.

“We are the largest corporate purchaser of renewable energy in the world,” Joe Kava, Google’s senior vice president of technical infrastructure, told the New York Times. “It’s good for the economy, good for business and good for our shareholders.”

(more…)

How to Make Solar Work

Solar energyGlobal energy demands are predicted to reach 46 terawatts by 2100. That number is a far reach from the 18 terawatts of energy currently generated around the world. According to one expert in the field, a major shift in the way we produce and consume energy is necessary in order to meet future demands.

Meng Tao, ECS member and Arizona State University professor, discussed how society could move toward meeting those demands at the PRiME 2016 meeting, where he presented his paper, “Terawatt Solar Photovoltaics: Roadblocks and Our Approaches.”

“We just cannot continue to consume fossil fuels the way we have for the last 200 years,” Tao told ECS. “We have to move from a fossil fuel infrastructure to a renewable infrastructure.”

For Tao, the world’s society cannot set on a path of “business as usual” by producing energy via coal, oil, and natural gas. And while solar energy has experienced a growth rate of nearly 45 percent in the last decade, it still only accounts for less than one percent of all electricity generated.

The shift to solar

Historically, solar technology soars when oil prices are at their highest. This is especially true during the oil embargo of the 1970s. During that time, private and public investments began to shift away from fossil fuels and toward solar and other renewable energies. That trend emerged again in the early 2000s when oil prices skyrocketed to a record-setting $140 per barrel.

“In the 1970s, the motivation to invest in solar and other forms of renewable energy was geopolitical,” Tao says. “Now, that motivation tends to focus more on the environment and sustainability.”

(more…)

Wind powerNew research shows another step forward in the goal of developing energy storage systems robust enough to store such intermittent sources as wind and solar on a large-scale.

Their work explores the opportunities in solid oxide cells (SOCs), which the group believes to be one of the best prospects in energy storage due to their high efficiency and wide range of scales.

ECS member John Irvine and his team from the University of St. Andrews have set out to overcome traditional barriers in this technology, developing a new method of electrochemical switching to simplify the manufacturing of the electrodes needed to deliver high, long-lasting energy activity.

This from the University of St. Andrews:

The results demonstrate a new way to produce highly active and stable nanostructures – by growing electrode nanoarchitectures under operational conditions. This opens exciting new possibilities for activating or reinvigorating fuel cells during operation.

(more…)

Krishnan Rajeshwar is a professor at the University of Texas, Arlington. Raj, as he is known, and is a former ECS President. His research over the years has touched on semiconductors, photoelectrochemical conversion, toxic waste, solar hydrogen production, and renewable energy just to name a few.

Rajeshwar was the editor of Interface, ECS’s membership magazine, for 14 years starting in 1999.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

University of Iowa researchers have teamed up with California-based startup HyperSolar to progress the science in producing clean energy from sunlight and water. The goal of this research is to develop a way to efficiently and sustainably produce low-cost renewable hydrogen for commercial use.

Hydrogen has huge potential as an alternative form of energy. According to the U.S. Energy Information Administration, hydrogen has the highest energy content of any fuel we use today (carbon dependent fuels included).

But hydrogen is not a naturally occurring element on this planet, so it needs to be produced. Currently, most hydrogen is produced via steam reforming – a process using fossil fuels and creating carbon dioxide. While the end produce is clan, renewable energy, the means of getting to that product were carbon dependent. The new study hopes to help move hydrogen production away from the traditional means of creation and toward electrolysis, which requires only electricity and water to create hydrogen.

“Developing clean energy systems is a goal worldwide,” says Syed Mubeen, HyperSolar’s lead scientist and chemical engineering professor at the University of Iowa. “Currently, we understand how clean energy systems such as solar cells, wind turbines, et cetera, work at a high level of sophistication. The real challenge going forward is to develop inexpensive clean energy systems that can be cost competitive to fossil fuel systems and be adopted globally and not just in the developed countries.”

(more…)

arpa-eThe U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) has recently announced up to $30 million in funding for a new program that focuses on renewable energy to convert air and water into cost-competitive liquid fuels.

The program, titled Renewable Energy to Fuels through Utilization of Energy-dense Liquids (REFUEL), is aimed at developing technologies that use renewable energy to convert air and water into carbon neutral liquid fuels – which can be converted into hydrogen or electricity to provide power for sustainable transportation.

The majority of vehicles in the transportation sector depend on liquid fuels such as gasoline or diesel to operate. While liquid fuels are energy dense and can be stored for a long period of time, liquid fossil fuels emit significant amounts of carbon dioxide into the environment. These emissions account for over 20 percent of the U.S.’s total greenhouse gas emissions and contribute to the overall effects of climate change.

(more…)

Antalexion

Image: Antalexion

With the increasing popularity of solar power and ongoing dialogue about the effects of climate changes comes inevitable discussions about the viability of renewable energy. While efficiency levels have grown tremendously over the years, many still worry about the feasibility of solar panels during inclement weather when the sun is not shining its brightest.

To address that issue, more attention has been focused on energy storage. However, a group of Chinese scientists are turning to the solar panels themselves to answer some of these questions.

In a recently published paper, scientist detailed a new way for solar panels to produce electricity from rain water. The way it works is pretty simple: researchers apply a thin layer of graphene to the bottom of the solar panel; when it rains, you simply flip the panel and allow the positively charged ions from the rain drops to interact with the graphene and produce electricity.

“Although great achievements have been made since the discovery of various solar cells, there is still a remaining problem that the currently known solar cells can only be excited by sunlight on sunny days,” wrote the researchers in the paper.

(more…)

  • Page 2 of 4