Congratulations to Chibueze Amanchukwu; Christopher Arges; Marm Dixit; Marta Hatzell; and Siddharth Komini Babu; the winners of the 2021-2022 ECS Toyota Young Investigator Fellowship for Projects in Green Energy Technology. ECS and the Toyota Research Institute of North America (TRI-NA), a division of Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA), chose the five recipients who are pursuing innovative electrochemical research in green energy technology. Through this fellowship, ECS and Toyota encourage young professionals and scholars to pursue battery and fuel cell research, and hope to see further innovative and unconventional technologies born from electrochemical research.

2021-2022 ECS Toyota Young Investigator Fellows

Chibueze AmanchukwuUniversity of Chicago
“Synthesis of novel perfluoroether polymer electrolytes for energy-dense solid-state lithium metal batteries”

Chibueze Amanchukwu is Neubauer Family Assistant Professor at the University of Chicago. He received his PhD in Chemical Engineering from the Massachusetts Institute of Technology (2017), with Paula Hammond as advisor. Amanchukwu pursued postdoctorate study at Stanford University with Zhenan Bao (2017-2019) and the University of Cambridge with Clare Grey (2019). His research on electrolyte design for next generation lithium batteries has been recognized by awards including the 2021 3M Nontenured Faculty Award; 2017-2019 Stanford University TomKat Center Postdoctoral Fellowship in Sustainable Energy and California Alliance Postdoctoral Fellowship; 2014-2017 National Defense Science and Engineering Graduate Fellowship; 2014 MIT-Imperial College London Global Fellowship; 2012 Texas A&M ChemE Outstanding Graduating Student Award; and 2011 Texas A&M Craig Brown Outstanding Senior Engineer Award. He has published 19 articles with an h-index of 14 and filed one patent. Amanchukwu serves on the Community Board of Materials Horizon. (more…)

Extended Deadline – February 28, 2021

ECS, in partnership with the Toyota Research Institute of North America (TRI-NA), a division of Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA), requests proposals from young professors and scholars pursuing innovative electrochemical research in green energy technology for the ECS Toyota Young Investigator Fellowship for Projects in Green Energy Technology.

Topics of interest

Along with the deadline extension, the fellowship’s scope of interests has expanded to include the following:

(more…)

The ECS Toyota Young Investigator Fellowship, a partnership between The Electrochemical Society and Toyota Research Institute of North America, a division of Toyota Motor North America, is in its fifth year. The fellowship aims to encourage young professors and scholars to pursue innovative electrochemical research in green energy technology. Through this fellowship, ECS and Toyota hope to see further innovative and unconventional technologies borne from electrochemical research.

The ECS Toyota Young Investigator Fellowship Selection Committee has chosen five recipients to receive the 2019-2020 fellowship awards for projects in green energy technology. (more…)

Toyota Fellowships Come Full Circle

Joaquin Rodriguez Lopez

Joaquin Rodriguez Lopez presenting his work at the Toyota Research Institute of North America in Ann Arbor, Michigan.

In 2014, ECS and Toyota Research Institute of North America came together to establish the ECS Toyota Young Investigator Fellowship to support young researchers working in green energy technology. The partnership between ECS and Toyota aims to leverage the Society’s network of researchers, awarding fellowship winners a minimum of $50,000 to pursue novel research over a one year period.

“We try to give folks the opportunity to do research that is a little more outside of the box,” said Paul Fanson, manager of Toyota’s North American Research Strategy Office, “where they might have difficulty getting funding somewhere else.”

As this year winds down and the 2016-2017 fellows come to the tail end of the research period, fellowship winners Elizabeth Biddinger, City College of New York; Joaquin Rodriguez Lopez, University of Illinois at Urbana-Champaign; and Joshua Snyder, Drexel University recently took their work to Toyota’s site in Ann Arbor, Michigan, to report their findings, connect with industry researchers, and explore opportunities that extend beyond the funding time period.

(more…)

In May 2017 during the 231st ECS Meeting, we sat down with 2016-2017 ECS Toyota Young Investigator Fellowship winner, Elizabeth Biddinger, to discuss green chemistry, sustainable engineering, and the future of transportation. The conversation was led by Amanda Staller, ECS’s web content specialist.

Biddinger is an assistant professor at the City College of New York, part of the City University of New York system. There, she leads a research group that covers research areas ranging from electrocatalysis to ionic liquids. Her work in switchable electrolytes earned her a spot among the 2016-2017 fellowship winners.

Listen to the podcast and download this episode and others for free on Apple Podcasts, SoundCloud, Podbean, or our RSS Feed. You can also find us on Stitcher and Acast.

(more…)

ToyotaThe ECS Toyota Young Investigator Fellowship kicked off in 2014, establishing a partnership between The Electrochemical Society and Toyota Research Institute of North America, aimed at funding young scholars pursuing innovative research in green energy technology.

The proposal deadline for the year’s fellowship is Jan. 31, 2017. Apply now!

While you put together your proposals, check out what Patrick Cappillino, one of the fellowship’s inaugural winners, says about his experience with the fellowship and the opportunities it presented.


The Electrochemical Society: Your proposed topic for the ECS Young Investigator Toyota Fellowship was “Mushroom-derived Natural Products as Flow Battery Electrolytes.” What inspired that work?

Patrick Cappillino: This research was inspired by a conversation with a colleague. I was relating the problem of redox instability in flow battery electrolytes. He told me his doctoral work had focused on an interesting molecule called Amavadin, produced by mushrooms, that was extremely stable and easy to make. The lightbulb really went off when we noticed that the starting material was the decomposition product of another flow battery electrolyte that has problems with instability.

(more…)

ECS Toyota Fellowship
The Electrochemical Society with Toyota North America
2017-2018 ECS Toyota Young Investigator Fellowship
for Projects in Green Energy Technology

Proposal Submission Deadline: January 31, 2017

ECS, in partnership with the Toyota Research Institute of North America (TRINA), a division of Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA), is requesting proposals from young professors and scholars pursuing innovative electrochemical research in green energy technology.

Global development of industry and technology in the 20th century, increased production of vehicles and the growing population have resulted in massive consumption of fossil fuels. Today, the automotive industry faces three challenges regarding environmental and energy issues: (1) finding a viable alternative energy source as a replacement for oil, (2) reducing CO2 emissions and (3) preventing air pollution. Although the demand for oil alternatives—such as natural gas, electricity and hydrogen—may grow, each alternative energy source has its disadvantages. Currently, oil remains the main source of automotive fuel; however, further research and development of alternative energies may bring change.

Fellowship Objectives and Content

The purpose of the ECS Toyota Young Investigator Fellowship is to encourage young professors and scholars to pursue research in green energy technology that may promote the development of next-generation vehicles capable of utilizing alternative fuels. Electrochemical research has already informed the development and improvement of innovative batteries, electrocatalysts, photovoltaics and fuel cells.

Through this fellowship, ECS and TRINA hope to see more innovative and unconventional technologies borne from electrochemical research.

The fellowship will be awarded to a minimum of one candidate annually. Winners will receive a restricted grant of no less than $50,000 to conduct the research outlined in their proposal within one year. Winners will also receive a one-year complimentary ECS membership as well as the opportunity to present and/or publish their research with ECS.

Meet previous winners.

(more…)

toyota-collage

From left to right: Elizabeth Biddinger, City College of New York; Joaquin Rodriguez Lopez, University of Illinois at Urbana-Champaign; Joshua Snyder, Drexel University

The ECS Toyota Young Investigator Fellowship Selection Committee has selected three recipients who will receive a minimum of $50,000 each for fellowships for projects in green energy technology. The winners are Professor Elizabeth Biddinger, City College of New York; Professor Joaquin Rodriguez Lopez, University of Illinois at Urbana-Champaign; and Professor Joshua Snyder, Drexel University.

The ECS Toyota Young Investigator Fellowship, a partnership between The Electrochemical Society and Toyota Research Institute of North America (TRINA), a division of Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA), is in its second year. A diverse applicant pool of more than 100 young professors and scholars pursuing innovative electrochemical research in green energy technology responded to ECS’s request for proposals.

“Scientists and engineers seek to unveil what is possible and to exploit that knowledge to provide solutions to the myriad of problems facing our world,” says ECS Executive Director Roque Calvo. “We are proud to have the continued support of Toyota in this never ending endeavor to uncover new frontiers and face new challenges.”

The ECS Toyota Young Investigator Fellowship aims to encourage young professors and scholars to pursue research in green energy technology that may promote the development of next-generation vehicles capable of utilizing alternative fuels.

Global development of industry and technology in the 20th century increased production of vehicles and the growing population have resulted in massive consumption of fossil fuels. Today, the automotive industry faces three challenges regarding environmental and energy issues:

(1) Finding a viable alternative energy source as a replacement for oil
(2) Reducing CO2 emissions
(3) Preventing air pollution

(more…)

Reutilizing carbon dioxide to produce clean burning fuels

Carbon dioxide

David Go has always seen himself as something of a black sheep when it comes to his scientific research approach, and his recent work in developing clean alternative fuels from carbon dioxide is no exception.

In 2015, Go and his research team at the University of Notre Dame were awarded a $50,000 grant to purse innovative electrochemical research in green energy technology through the ECS Toyota Young Investigator Fellowship. With a goal of aiding scientists in advancing alternative energies, the fellowship aims to empower young researchers in creating next-generation vehicles capable of utilizing alternative fuels that can lead to climate change action in transportation.

The road less traveled

While advancing research in electric vehicles and fuel cells tend to be the top research areas in sustainable transportation, Go and his team is opting to go down the road less traveled through a new approach to green chemistry: plasma electrochemistry.

(MORE: Read Go’s Meeting Abstract on this topic, entitled “Electrochemical Reduction of CO2(aq) By Solvated Electrons at a Plasma-Liquid Interface.”)

“Our approach to electrochemistry is completely a-typical,” Go, associate professor at the University of Notre Dame, says. “We use a technique called plasma electrochemistry with the aim of processing carbon dioxide – a pollutant – back into more useful products, such as clean-burning fuels.”

(more…)

After Toyota’s 2015 release of the first mass-market fuel cell car, the Japanese automaker is gearing up to release the second generation of its fuel cell vehicle in 2019.

The initial version of the Mirai, which was heralded by Toyota as the ultimate “green car,” could travel up to 300 miles on a single tank of hydrogen and refuel in less than five minutes. The starting price for the vehicle is currently $57,460.

Toyota’s new version of the Mirai promises to be more affordable than its predecessor, potentially making the clean energy vehicle well-received among consumers.

(more…)

  • Page 1 of 2
    • 1
    • 2