U.S. Begins Utilizing Hydro Power (Video)

The United States has focused the majority of its solar energy efforts on solar and wind power for the grid. For the first time ever, wave power is being utilized in the U.S. to power homes off the coast of Hawaii.

Waves are being turned into electricity through the Azura prototype, which captures the complex motion of waves to more efficiently capture wave movement for better electricity generation.

The device, which was deployed last month, will be monitored for one year to measure effectiveness and efficiency. If all goes as well as researchers predict, a larger version will hit the seas in 2017.

(more…)

The Future of Superconductors

This emerging technology may lead to a theory to guide future engineers.Image: Futurity/Christian Benke

This emerging technology may lead to a theory to guide future engineers.
Image: Futurity/Christian Benke

Researchers from Cornell University are focusing their efforts on developing superconductors that can carry large energy currents, thereby expanding the possible benefits that can be produced by high-temperature superconductors.

In order to coax the superconductors to carry these large currents, researchers have previously bombarded materials with high-energy ion beams. This approach increased the current density carried, but still left the question of what is actually happening in this reaction.

Thanks to the technology of the scanning tunneling microscope (STM), the researchers can now understand what is happening at the atomic level. (German physicist, Gerd Binnig, won the Nobel Prize in Physics in 1986 for the invention of the scanning tunneling microscope He gave the ECS Lecture at the 203rd ECS Meeting in Paris, France.)

(more…)

ECS Masters – Esther Takeuchi

“Scientific discovery is a marathon, not a sprint. Sometimes you’re running faster or slower, but you always have to keep going.”
Esther Takeuchi

Esther Takeuchi was the key contributor to the battery system that powers life-saving cardiac defibrillators.


She currently holds more than 150 U.S. patents, more than any other American woman, which earned her a spot in the Inventors Hall of Fame. Her innovative work in battery research also landed her the National Medal of Technology and Innovation in 2008.

Make sure to subscribe to our YouTube channel!

You can also listen to this installment of ECS Masters as an audio podcast.

IBM’s New Chip Quadruples Capacity

In recent years, the semiconductor industry has struggled to keep up with the pace of the legendary Moore’s Law. With the current 14-nanometer generation of chips, researchers have begun to question if it will remain possible to double transistor density every two and a half years. However, IBM is now pushing away the doubt with the development of their new chip.

The new ultra-dense chip hosts seven-nanometer transistors, which yields about four times the capacity of our current computer chip. Like many other researchers in the field, IBM decided to move away for the traditional and expensive pure silicon toward a silicon-germanium hybrid material to produce the new chip.

The success of the high-capacity chip relies on the utilization of this new material. The use of silicon-germanium has made it possible for faster transistor switching and lower power requirements. And did we mention how impossibly small these transistors are?

(more…)

Chemical Bonds On-Demand

PhysRevLett.114.233003

Tailored laser pulse controls the formation of a molecular bond between two atoms.
Image: Christiane Koch

Until now, the idea of controlling reactions with the light from lasers was only theoretical. However, new research shows that a laser pulse has the ability to control the formation of a molecular bond between two atoms.

Due to this new development, researchers can now control the path of the chemical process with extreme precision.

This from APS Physics:

For the first time, researchers demonstrate the coherent control of the reaction by which two atoms form a molecule. The achievement—coupled with other photocatalyst tools—could potentially lead to a chemical assembly line, in which lasers slice and weld molecular pieces into a desired end product.

(more…)

Unique IdentifierBack in March, I wrote a post gushing about the utility of ORCID identifiers. For those of you who haven’t seen it you can find it here, and for those of you who have seen it, but have yet to sign up, it’s probably time to think about it!

Because everyone likes lists, here’s ECS’s top 5 reasons to register for your ORCID ID today:

1. Differentiate yourself.
Think about how many “J. Smith”s there are in the world. ORCID lets you stand out from the crowd and ensures that your research is appropriately attributed.

2. Names change, affiliations change, e-mail accounts change.
There is little about an individual’s research profile that is static – people find new jobs, change names, or just switch from Outlook to Gmail. No matter what the change is, your professional contacts will be able to find your current information—even if they’re reaching out to you about a paper you wrote four jobs ago or in grad school.

(more…)

Charles W. Tobias Young Investigator Award

Application Deadline – October 1, 2015

Submit your nomination today!

Tobias-1The Charles W. Tobias Young Investigator Award is presented to a young scientist or engineer who shows outstanding scientific and/or engineering work in fundamental or applied electrochemistry, or solid state science and technology. Read the nomination rules.

The previous recipient of this award was Adam Weber in 2014, who exhibited outstanding leadership in research surrounding fuel cells and flow batteries.

The award honors the memory of Charles W. Tobias, former ECS President and pioneer in the field of electrochemical engineering. His example, counsel, and advice impacted many young people, encouraging them to pursue science and advance future innovations.

Submit your nomination today!

New Material to Make Better Transistors

According to new research, black phosphorus may have the potential to outpace silicon.Image:

According to new research, black phosphorus may have the potential to outpace silicon.
Image: McGill University

We’re one step closer to atomic layer transistors due to recent research by a team of McGill University and Université de Montréal researchers. The new findings are the result of multidisciplinary work that yielded evidence that the material black phosphorus may make it possible to pack more transistors on a chip.

Researchers from McGill University joined with ECS’s Richard Martel in the Université de Montréal’s Department of Chemistry to examine if black phosphorus could tackle the prominent issue in the electronics field of designing energy-efficient transistors.

Similar to graphite, black phosphorus can be separate easily into single atomic layers to allow for thin transistors. When researchers are able to produce thinner transistors, they are also more efficient.

(more…)

Want to get a little smarter during your commute? Podcasts are a great way to stay entertained during rush hour, and these specific podcasts may even teach you something you never knew before. Check out these podcasts that are sure to entertain, make you laugh, and keep your current no the cutting-edge of science.

ECS Podcast
Did you know that we regularly produce a podcast? Through the ECS Podcast, we sit down with some of the top scientists in the world and attempt to connect the dots between the science, our everyday lives, and the sustainability of the planet. Listen and download all of our episodes for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.
Listen to:Esther Takeuchi on Engineering Life-Saving Batteries

Inquiring Minds
Each week, the team at Inquiring Minds explores the area where science, politics, and society collides. Experts discuss and analyze the most probing scientific headlines of the week and attempt to see what is true and what is yet to be discovered.
Listen to:The Power of Wearable Technology

(more…)

Posted in Podcasts

Big Energy Boost for Small Electronics

Yarn made of niobium nanowires can be used to make very efficient supercapacitors.Image: MIT

Yarn made of niobium nanowires can be used to make very efficient supercapacitors.
Image: MIT

With the recent surge in wearable electronics, researchers and looking for a way to get larger amounts of power to these tiny devices. Due to the limited size of these devices, it is difficult to transmit data via the small battery.

Now, MIT researchers have found a way to solve this issue by developing an approach that can deliver short but big bursts of power to small devices. The development has the potential to affect more than wearable electronics through its ability to deliver high power in small volumes to larger-scale applications. The key to this new development is the team’s novel supercapacitor.

This from MIT:

The new approach uses yarns, made from nanowires of the element niobium, as the electrodes in tiny supercapacitors (which are essentially pairs of electrically conducting fibers with an insulator between). In this new work, [Seyed M. Mirvakili] and his colleagues have shown that desirable characteristics for such devices, such as high power density, are not unique to carbon-based nanoparticles, and that niobium nanowire yarn is a promising an alternative.

(more…)