Assuming that the deployment of carbon removal technology will outpace emissions and conquer global climate change is a poor substitute for taking action now, say researchers.

With the current pace of renewable energy deployment and emissions reductions efforts, the world is unlikely to achieve the Paris Climate Agreement’s goal of limiting global warming to 2 degrees Celsius above pre-industrial levels. This trend puts in doubt efforts to keep climate change damages from sea level rise, heat waves, drought, and flooding in check. Removing carbon dioxide from the atmosphere, also known as “negative emissions,” has been thought of as a potential method of fighting climate change.

In their new perspective published in the journal Science, however, researchers from Stanford University explain the risks of assuming carbon removal technologies can be deployed at a massive scale relatively quickly with low costs and limited side effects—with the future of the planet at stake.

“For any temperature limit, we’ve got a finite budget of how much heat-trapping gases we can put into the atmosphere. Relying on big future deployments of carbon removal technologies is like eating lots of dessert today, with great hopes for liposuction tomorrow,” says Chris Field, professor of biology and of earth system science and director of Stanford’s Woods Institute for the Environment.

(more…)

Sharing the Science

Free the Science Week

(Click to enlarge)

In April 2017, ECS celebrated its first annual Free the Science Week, giving the world a preview of what complete open access to peer-reviewed scientific research will look like.

Free the Science Week is part of ECS’s long-term Free the Science initiative, which will provide free access to the peer-reviewed research in the entire ECS Digital Library, not just for a week, but permanently.

Here are just a few insights from the week:

(more…)

The 231st ECS Meeting took place last week in New Orleans, LA, where Way Kuo, president at City University of Hong Kong, delivered the ECS Lecture, “A Risk Look at Energy Development.” In his talk, Kuo highlighted the many risks we face every day, ranging from air pollution to auto accidents to cyber-attacks. While those risks exist, Kuo pointed out that the biggest risk today is energy and energy safety, including issues of energy consumption, global warming, and sustainability.

“Renewable energies have witnessed rapid development in recent years worldwide in a concerted effort to curb greenhouse gas emissions,” Kuo wrote in his meeting abstract. “And yet, wind power production still constitutes only 4% in the global power mix and solar PV represents 1%, while fossil fuels remain the world’s dominant energy source, accounting for around 65%. Coal, the main culprit for greenhouse gas emissions, represents 43% of fossil fuels, even though the coal-fired generation share of total electricity production is declining, and still causes 7 million death a year due to air pollution, according to the United Nations. Any discussion of energies today cannot neglect nuclear energy as a key base-load power, despite concerns about possible radiation leaks and nuclear waste.”

Recently, Kuo wrote an article in the South China Morning Post, where he discussed the importance of properly capturing and analyzing scientific data, which will improve our ability to predict and respond to disasters. The article, which was adapted from Kuo’s ECS Lecture, analyzes security issues related to everything from terrorism to foodborne illness.

(more…)

General Student Poster Session winners (L-R):1st place, Sanjana Das and Stephanie Silic (not pictured) from University of Nevada, Las Vegas. 2nd place, Katrina Vuong and Laurie Clare (not pictured) from San Diego State University. Two 3rd place winners. Josie Duncan and Mary Heustess (not picture) from Clemson University and Phuong Tu Mai from Osaka Prefecture University. Honorable mention, Emily Gullette, Natalie Handson (not pictured), Emily Klutz (not pictured), and Meredith Hammer from Clemson.
(Click to enlarge)

It is with great pride that ECS honors the winners of the General Student Poster Session Awards for the 231st ECS Meeting in New Orleans, LA.

ECS established the General Student Poster Session Awards in 1993 to acknowledge the eminence of its students’ work. The winners exhibit a profound understanding of their research topic and its relation to fields of interest to ECS.

In order to be eligible for the General Student Poster Session Awards, students must submit their abstracts to the Z01 General Society Student Poster Session symposium and present their posters at the biannual meeting. First and second place winners receive a certificate in addition to a cash award.

The winners of the General Student Poster Session Awards for the 231st ECS Meeting are as follows:

1st Place
Name: Sanjana Das and Stephanie Silic
Institution: University of Nevada, Las Vegas
Poster Number: 2015
Poster Title: Nanotechnology for Water-Less Cleaning of Solar Panels

2nd Place
Name: Katrina Vuong and Laurie Clare
Institution: San Diego State University
Poster Number: 2021
Poster Title: Effect of Added Bases on the Redox-Responsive Dimerization of a 4 H-Bond Array Containing a Phenylenediamine Redox Couple

(more…)

By: Peter Byrley, University of California, Riverside

A smartphone touchscreen is an impressive piece of technology. It displays information and responds to a user’s touch. But as many people know, it’s easy to break key elements of the transparent, electrically conductive layers that make up even the sturdiest rigid touchscreen. If flexible smartphones, e-paper and a new generation of smart watches are to succeed, they can’t use existing touchscreen technology.

We’ll need to invent something new – something flexible and durable, in addition to being clear, lightweight, electrically responsive and inexpensive. Many researchers are pursuing potential options. As a graduate researcher at the University of California, Riverside, I’m part of a research group working to solve this challenge by weaving mesh layers out of microscopic strands of metal – building what we call metal nanowire networks.

These could form key components of new display systems; they could also make existing smartphones’ touchscreens even faster and easier to use.

The problem with indium tin oxide

A standard smartphone touchscreen has glass on the outside, on top of two layers of conductive material called indium tin oxide. These layers are very thin, transparent to light and conduct small amounts of electrical current. The display lies underneath.

When a person touches the screen, the pressure of their finger bends the glass very slightly, pushing the two layers of indium tin oxide closer together. In resistive touchscreens, that changes the electrical resistance of the layers; in capacitive touchscreens, the pressure creates an electrical circuit.

(more…)

powerPADIn its first “Science for Solving Society’s Problems Challenge,” ECS partnered with the Bill & Melinda Gates Foundation to leverage the brainpower of the many scientists in electrochemistry and solid state science and technology that regularly attend ECS meetings. From this project, seven presentations were selected, with a total of $360,000 awarded to pursue research projects addressing world sanitation problems.

The powerPAD, a collaboration among Neus Sabaté, Juan Pablo Esquivel, and Erik Kjeang, was one of the projects selected to receive $50,000 in funding. Now, just over two years later, the researchers are discussing their findings and how their work has transformed over time.

“As originally proposed, the developed battery is completely made of organic materials such as cellulose, carbon electrodes, beeswax and organic redox species, and can be fabricated by affordable methods with low energy consumption,” Esquivel told ECS in an email. “After it’s used, the battery can be disposed of in an organic waste container or even discarded in the field, because it biodegrades by the action of microorganisms present in soils and water bodies. In the article we have shown that this biodegradable battery can substitute for a Li-ion coin cell battery to run a portable water monitoring device. The battery is activated upon the addition of a drop of the same water sample that is analyzed.”

(more…)

Periodic TableUsing high pressure, scientists have created the first high-entropy metal alloy made of common metals to have a hexagonal close-packed (HCP) atomic structure.

This makes it lighter and stronger than comparable metal alloys with different structures.

Traditional alloys typically consist of one or two dominant metals with a pinch of other metals or elements thrown in. Classic examples include adding tin to copper to make bronze, or carbon to iron to create steel.

In contrast, “high-entropy” alloys consist of multiple metals mixed in approximately equal amounts. The result is stronger and lighter alloys that are more resistant to heat, corrosion, and radiation, and that might even possess unique mechanical, magnetic, or electrical properties.

Despite significant interest from material scientists, high-entropy alloys have yet to make the leap from the lab to actual products. One major reason is that scientists haven’t yet figured out how to precisely control the arrangement, or packing structure, of the constituent atoms.

(more…)

AirplaneIn 2016, Solar Impulse 2 was the first solar-powered electrified aircraft to make a trip around the world. But that aircraft wasn’t the first to partake in electric flight, nor will it be the last.

Since the development of the battery-powered Militky MB-E1 in the early 1970s, there has been excitement surrounding the promise of an electric aircraft. However, many of the concepts being floated around by aerospace companies assume huge improvements in current battery technology.

The problem? According to a recently published article in Wired, current battery technology does not offer the power-to-weight ratio needed to make battery-powered planes feasible.

But battery technology has taken leaps over the past few years. Energy storage devices are become more efficient and lighter simultaneously. But how long will it take to be able to pack enough energy into a device while remaining light enough to glide through the sky?

“There’s already been a lot of progress,” Venkat Srinivasan, battery expert with Argonne National Lab, told Wired. “It’s not the same ballpark as Moore’s law progress because it’s chemistry, not electronics, but it’s still very good.”

(more…)

By: Elizabeth Gilbert, The Medical University of South Carolina and Katie Corker, Grand Valley State University

ResearchWhat is “open science”?

Open science is a set of practices designed to make scientific processes and results more transparent and accessible to people outside the research team. It includes making complete research materials, data and lab procedures freely available online to anyone. Many scientists are also proponents of open access, a parallel movement involving making research articles available to read without a subscription or access fee.

Why are researchers interested in open science? What problems does it aim to address?

Recent research finds that many published scientific findings might not be reliable. For example, researchers have reported being able to replicate only 40 percent or less of cancer biology results, and a large-scale attempt to replicate 100 recent psychology studies successfully reproduced fewer than half of the original results.

This has come to be called a “reproducibility crisis.” It’s pushed many scientists to look for ways to improve their research practices and increase study reliability. Practicing open science is one way to do so. When scientists share their underlying materials and data, other scientists can more easily evaluate and attempt to replicate them.

Also, open science can help speed scientific discovery. When scientists share their materials and data, others can use and analyze them in new ways, potentially leading to new discoveries. Some journals are specifically dedicated to publishing data sets for reuse (Scientific Data; Journal of Open Psychology Data). A paper in the latter has already been cited 17 times in under three years – nearly all these citations represent new discoveries, sometimes on topics unrelated to the original research.

(more…)

As we are getting ready to go to the 231st ECS Meeting in New Orleans, we thought of some things we didn’t want you to forget!

Registration opens on Saturday at 1600h and on Sunday at 0700h at the Hilton Riverside. At registration, you’ll only need to enter your last name at the kiosk and your badge will be printed for you.

Before you leave home, go here to log in and add a short course or any ticketed event:

(more…)

Posted in Meetings
Tagged