Women in STEMEvery year, we celebrate International Women’s Day on March 8 as a way to commemorate the movement for women’s rights. This global holiday honors the social, economic, cultural, political – and in our case – scientific achievements of women.

Additionally, International Women’s Day also marks a call to action for accelerating gender parity. Currently, women remain underrepresented in the STEM workforce, although to a lesser degree than the past. According to the National Science Foundation, the greatest gender disparities still exist in the fields of engineering, computer science, and physical science.

In the U.S., women make up half of the entire workforce, but only 29 percent of the science and engineering field. While the gender gap may still exist for women in STEM, many phenomenal female scientists have entered the field over the years and left an indelible mark on the science.

Take Nettie Stevens (born 1861), the foremost researcher in sex determination, whose work was initially rejected because of her sex. Or Mary Engle Pennington (born 1872), an American chemist at the turn of the 20th century, pioneering research that allows us to process, store, and ship food safely. Barbara McClintock (born 1902) was deemed crazy when she suggested that genes jump from chromosome to chromosome. Of course, she was later awarded the Nobel Prize in Physiology or Medicine for her discovery of genetic transportation.


Register Today and Save!

Only one month left to save $125 on registration!

The 233rd ECS Meeting will take place May 13-17, 2018 at the Seattle Sheraton and Washington State Convention Center.

If our strong technical program, of over 2,600 abstracts being presented in 43 symposia across five days, wasn’t enough of a reason to join us, check out some of the other exciting events taking place in Seattle.


By: Nir Kshetri, University of North Carolina – Greensboro

IOTThe world is full of connected devices – and more are coming. In 2017, there were an estimated 8.4 billion internet-enabled thermostats, cameras, streetlights and other electronics. By 2020 that number could exceed 20 billion, and by 2030 there could be 500 billion or more. Because they’ll all be online all the time, each of those devices – whether a voice-recognition personal assistant or a pay-by-phone parking meter or a temperature sensor deep in an industrial robot – will be vulnerable to a cyberattack and could even be part of one.

Today, many “smart” internet-connected devices are made by large companies with well-known brand names, like Google, Apple, Microsoft and Samsung, which have both the technological systems and the marketing incentive to fix any security problems quickly. But that’s not the case in the increasingly crowded world of smaller internet-enabled devices, like light bulbs, doorbells and even packages shipped by UPS. Those devices – and their digital “brains” – are typically made by unknown companies, many in developing countries, without the funds or ability – or the brand-recognition need – to incorporate strong security features.


HydrogenResearchers at KTH have successfully tested a new material that can be used for cheap and large-scale production of hydrogen – a promising alternative to fossil fuel.

Precious metals are the standard catalyst material used for extracting hydrogen from water. The problem is these materials – such as platinum, ruthenium and iridium – are too costly to make the process viable. A team from KTH Royal Institute of Technology recently announced a breakthrough that could change the economics of a hydrogen economy.

Led by Licheng Sun, professor of molecular electronics at KTH Royal Institute of Technology, the researchers concluded that precious metals can be replaced by a much cheaper combination of nickel, iron and copper (NiFeCu).


MicroscopeLenses are no longer necessary for some microscopes, according to the engineers developing FlatScope, a thin fluorescent microscope whose abilities promise to surpass those of old-school devices.

A paper in Science Advances describes a wide-field microscope thinner than a credit card, small enough to sit on a fingertip, and capable of micrometer resolution over a volume of several cubic millimeters.

FlatScope eliminates the tradeoff that hinders traditional microscopes in which arrays of lenses can either gather less light from a large field of view or gather more light from a smaller field.

Rice University engineers Ashok Veeraraghavan, Jacob Robinson, Richard Baraniuk, and their labs began developing the device as part of a federal initiative by the Defense Advanced Research Projects Agency as an implantable, high-resolution neural interface. But the device’s potential is much greater.


Researchers have created an algorithm that could work alongside an extremely sensitive laser technology that reflects off nearby objects to help self-driving cars see around corners.

Imagine that a driverless car is making its way through a winding neighborhood street, about to make a sharp turn onto a road where a child’s ball is rolling across the street. Although no person in the car can see that ball, the car stops to avoid it.


ECS meeting attendeesJoin us as ECS comes to the Seattle Sheraton and Washington State Convention Center in Seattle, WA! Our strong technical program of 2,600 abstracts being presented in 46 symposia over five days will have something for everyone!

ECS meetings are well known for their strength in areas such as batteries/energy storage, fuel cells/energy conversion, carbon nanostructures, semiconductors, sensors, corrosion, and more. In addition, the Seattle meeting will explore newer areas such as materials recycling, data science for modeling and design, consumer products, and flexible electronics.

Take a moment and read a few topic close-ups, and see what is in store!


Why do synthetic 2D materials often perform orders of magnitude worse than predicted? A new understanding of this scenario could improve the materials’ performance in future electronics, photonics, and memory storage.

2D materials are films only an atom or two thick. Researchers make 2D materials by the exfoliation method—peeling a slice of material off a larger bulk material—or by condensing a gas precursor onto a substrate. The former method provides higher-quality materials, but is not useful for making devices. The second method is well established in industrial applications, but yields low performance 2D films.

The researchers demonstrated, for the first time, why the quality of 2D materials grown by the chemical vapor deposition method have poor performance compared to their theoretical predictions. They report their results in Scientific Reports.


By: Bob Marcotte, University of Rochester 

Electric GridIn order to power entire communities with clean energy, such as solar and wind power, a reliable backup storage system is needed to provide energy when the sun isn’t shining and the wind doesn’t blow.

One possibility is to use any excess solar- and wind-based energy to charge solutions of chemicals that can subsequently be stored for use when sunshine and wind are scarce. At that time, the chemical solutions of opposite charge can be pumped across solid electrodes, thus creating an electron exchange that provides power to the electrical grid.

The key to this technology, called a redox flow battery, is finding chemicals that can not only “carry” sufficient charge, but also be stored without degrading for long periods, thereby maximizing power generation and minimizing the costs of replenishing the system.


Fuel Cell CarUsing advanced computational methods, University of Wisconsin–Madison materials scientists have discovered new materials that could bring widespread commercial use of solid oxide fuel cells closer to reality.

A solid oxide fuel cell is essentially an engine that provides an alternative way to burn fossil fuels or hydrogen to generate power. These fuel cells burn their fuel electrochemically instead of by combustion, and are more efficient than any practical combustion engine.

As an alternative energy technology, solid oxide fuel cells are a versatile, highly efficient power source that could play a vital role in the future of energy. Solid oxide fuel cells could be used in a variety of applications, from serving as a power supply for buildings to increasing fuel efficiency in vehicles.

However, solid oxide fuel cells are more costly than conventional energy technologies, and that has limited their adoption.


  • Page 1 of 76