Battery Technology to Solve Issues in Water

Battery technology for water desalination

Inspired by the principles of the sodium ion battery, Kyle Smith (right) is re-appropriating technology to make huge strides in water desalination.
Image: L. Brian Stauffer

Battery applications range from powering electronic devices to storing energy harvested from renewable sources, but batteries have a range of applications beyond the obvious. Now, researchers from the University of Illinois at Urbana-Champaign are taking existing battery technology and applying it to efforts in water desalination.

The researchers have published the open access article in the Journal of The Electrochemical Society.

“We are developing a device that will use the materials in batteries to take salt out of water with the smallest amount of energy that we can,” said Kyle Smith, ECS member and assistant professor at the University of Illinois at Urbana-Champaign. “One thing I’m excited about is that by publishing this paper, we’re introducing a new type of device to the battery community and to the desalination community.”

Water desalination technologies have flourished as water needs have grown globally. This could be linked to growing populations or drought. However, because of technical hurdles, wide-spread implementation of these technologies has been difficult. However, the new technologies developed could combat that issue by using electricity to draw charged salt ions out of the water.

This from the University of Illinois at Urbana-Champaign:

The battery approach holds several advantages over reverse osmosis. The battery device can be small or large, adapting to different applications, while reverse osmosis plants must be very large to be efficient and cost effective, Smith said. The pressure required to pump the water through is much less, since it’s simply flowing the water over the electrodes instead of forcing it through a membrane. This translates to much smaller energy needs, close to the very minimum required by nature, which in turn translates to lower costs. In addition, the rate of water flowing through it can be adjusted more easily than other types of desalination technologies that require more complex plumbing.

Read the full article.

“We believe there’s a lot of promise,” Smith said. “There’s a lot of work that’s gone on in developing new materials for sodium ion batteries. We hope our work could spur researchers in that area to investigate new materials for desalination. We’re excited to see what kind of doors this might open.”

Related Post

Related Post

DISCLAIMER

All content provided in the ECS Redcat blog is for informational purposes only. The opinions and interests expressed here do not necessarily represent ECS's positions or views. ECS makes no representation or warranties about this blog or the accuracy or reliability of the blog. In addition, a link to an outside blog or website does not mean that ECS endorses that blog or website or has responsibility for its content or use.

Post Comments

Your email address will not be published. Required fields are marked *