Steve Martin

ECS member Steve Martin receives a $2.5M grant to pursue research in glassy solids.
Image: Christopher Gannon

The world relies on battery power. The smartphone market alone – which is powered by lithium-ion batteries – is expected to reach 1.5B units in 2016. ECS member Steve Martin believes he may be able to take those batteries to the next level through efforts in glassy solids.

Martin, a professor at Iowa State University and associate of the U.S. Department of Energy’s Ames Laboratory, has been in the field of battery research for over 30 years. Throughout that time, his main focus of research has shifted to measuring the basic properties of glassy solids and trying to understand how their ions move and the thermal and chemical stability.

Martin believes that using glass solids as the electrolytes in batteries would make them safer and more powerful. This is an effort to diverge from traditional liquid-electrolyte batteries, which have experienced issues with safety and energy capacity.

To push this research, Martin recently received a three-year, $2.5M grant from the DOE.

“This is my dream-come-true project,” Martin says. “This is what I’ve been working on for 36 years.”

(more…)

ECS Podcast – The Battery Guys

This year marks the 25th anniversary of the commercialization of the lithium-ion battery. To celebrate, we sat down with some of the inventors and pioneers of Li-ion battery technology at the PRiME 2016 meeting.

Speakers John Goodenough (University of Texas at Austin), Stanley Whittingham (Binghamton University), Michael Thackeray (Argonne National Laboratory), Zempachi Ogumi (Kyoto University), and Martin Winter (Univeristy of Muenster) discuss how the Li-ion battery got its start and the impact it has had on society.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

Electric VehiclesIn 2005, the number of electric vehicles on the road could be measured in the hundreds. Over the years, researchers have made technological leaps in the field of EVs. Now, we’ve exceeded a global threshold of one million EVs, and the demand continues to grow.

However, the ultimate success and growth of the EV hinges on battery technology. With some scientists stating that convention Li-ion batteries are approaching their theoretical energy density limits, researchers have begun exploring new energy storage technologies.

ECS member Qiang Zhang is one researcher focusing on technologies beyond Li-ion, specifically focusing on lithium sulfur batteries in a recently published paper.

“The lithium sulfur battery is recognized as a promising alternative for its intercalation chemistry counterparts,” Zhang says. “It possesses a theoretical energy density of ~2600 Wh kg-1 and provides a theoretical capacity of 1672 mAh g−1 through multi-electron redox reactions. Additionally, valuable characteristics like high natural abundance, low cost and environmental friendliness of sulfur have lent competitive edges to the lithium sulfur battery.”

(more…)

Lithium-ion battery safety has been a hot topic in the scientific community in light of instances of the Samsung Galaxy Note 7 bursting into flames. In order to address these concerns, scientists must first better understand exactly what is causing these safety concerns. In order to do that, a team from the University of Michigan is looking inside the batteries and filming growing dendrites – something the researchers cite as one of the major problems for next-gen lithium batteries.


The study focused primarily on lithium-metal batteries, which have the potential to store 10 times more energy that current lithium-ion batteries. However, researchers believe that issues with dendrites cannot be amended, the future of the Li-metal battery will not be as limitless as some believe.

“As researchers try to cram more and more energy in the same amount of space, morphology problems like dendrites become major challenges. While we don’t fully know why the Note 7s exploded, dendrites make bad things like that happen,” said Kevin Wood, postdoctoral researcher and ECS student member. “If we want high energy density batteries in the future and don’t want them to explode, we need to solve the dendrite problem.”

(more…)

John B. Goodenough

Goodenough was recently named Fellow of ECS at the PRiME 2016 meeting.

John B. Goodenough is recognized internationally as one of the key minds behind the development of the lithium-ion battery; a device that is used to power a huge percentage of today’s electronics and a technology that helped shape the technological frontier.

In a recent interview with the BBC’s Today program’s John Humphrys, the man who helped make the mobile phone possible discusses battery safety in light of exploding Samsung batteries, the Nobel Prize, and his why he doesn’t like cellphones.

“I see the students running around, punching these little tablets, and not talking with one another,” Goodenough says. “I see people going out to dinner and not talking to their partner, rather sitting there talking to someone on their phone, I say, ‘Well, that’s not the way to live.’ Technology is morally neural, it’s what we do with technology that judges us.”

Listen to the full interview here.

BatteryLithium-air batteries are viewed by many as a potential next-generation technology in energy storage. With the highest theoretical energy density of all battery devices, Li-air could revolutionize everything from electric vehicles to large-scale grid storage. However, the relatively young technology has a few barriers to overcome before it can be applied. A new study published in the Journal of The Electrochemical Society (JES) is taking a fundamental step forward in advancing Li-air through the development of mixed metal catalyst that could lead to more efficient electrode reactions in the battery.

The paper, entitled “In Situ Formed Layered-Layered Metal Oxide as Bifunctional Catalyst for Li-Air Batteries,” details a cathode catalyst composed of three transition metals (manganese, nickel, and cobalt), which can create the right oxidation state during the battery cycling to enable both the catalysis of the charge and the discharge reaction.

Future opportunities

According to K.M. Abraham, co-author of the paper, the manganese allows for the catalysis of the oxygen reduction reaction while the cobalt catalyzes the charge reaction of the battery.

“This offers opportunities for future research to develop similar materials to optimize the catalysis of the Li-air battery using one material that will combine the functions of these mixed metal oxides,” Abraham says.

(more…)

Researchers from New York University have developed a new technique to give a highly detailed, 3D look inside a lithium-ion battery.

“One particular challenge we wanted to solve was to make the measurements 3D and sufficiently fast, so that they could be done during the battery charging cycle,” explains Alexej Jerschow, co-author of the study that details the development. “This was made possible by using intrinsic amplification processes, which allow one to measure small features within the cell to diagnose common battery failure mechanisms. We believe these methods could become important techniques for the development of better batteries.”

The look that the researchers offer gives new insight to dendrites – the deposits that build up inside a Li-ion battery that can affect performance and safety. To do this, the team used MRI technology to focus the image and took an additional step to improve image quality.

(more…)

TeslaOne year ago Tesla Motors announced plans to build its Gigafactory to produce huge numbers of batteries, giving life to the old saying, “if you want something done right, do it yourself.”

By making electric car batteries that Tesla used to buy from others, CEO Elon Musk adopted a strategy made famous by Henry Ford – build a vertically integrated company that controls the many stages of production. By integrating “backward” into its supply chain, Musk is betting Tesla can improve the performance and lower the costs of batteries for its vehicles.

Now, Musk wants Tesla to acquire SolarCity for similar reasons, but with a slightly different twist.

SolarCity is one of the largest installers of solar photovoltaic panels, with some 300,000 residential, commercial and industrial customers in 27 states. The proposed merger with SolarCity would vertically integrate Tesla forward, as opposed to backward, into the supply chain. That is, when people come to Tesla stores to buy a vehicle, they will be able to arrange installation of solar panels – and potentially home batteries – at the same time.

This latest move would bring Tesla one step closer to being the fully integrated provider of sustainable energy solutions for the masses that Elon Musk envisions. But does it make business sense?

The real issue in my mind comes down to batteries and innovation.

Creating demand and scale

Although installing batteries is not a big part of SolarCity’s current business, the company is a potentially large consumer of Tesla’s batteries from the Gigafactory. Tesla makes Powerwall batteries for homes and larger Powerpack systems for commercial and industrial customers.

Any increase in the flow of batteries through the factory gives Tesla better economies of scale and potential for innovation. Innovation comes with the accumulated experience gained from building a key component of its electric vehicles as well as Tesla’s energy storage systems. As the company manufactures more batteries, it will find ways to innovate around battery design and production.

(more…)

Samsung Galaxy Note 7

Image: CC0

Last week, Samsung ordered a global recall of its Galaxy Note 7 phones after investigations into claims of exploding devices revealed faulty lithium-ion batteries. Now, the FAA is strongly urging passengers to forge bringing the device on airliners due to safety risks.

Earlier this year, we spoke to ECS member K.M. Abraham about lithium-ion battery devices and safety concerns associated with them.

“It is safe to say that these well-publicized hazardous events are rooted in the uncontrolled release of the large amount of energy stored in Li-ion batteries as a result of manufacturing defects, inferior active and inactive materials used to build cells and battery packs, substandard manufacturing and quality control practices by a small fraction of cell manufacturers, and user abuses of overcharge and over-discharge, short-circuit, external thermal shocks and violent mechanical impacts,” Abraham said. “Safety hazards of Li-ion batteries occur when the fundamental principle of controlled release of energy on which battery technology is based is compromised by materials and manufacturing defects and operational abuses.”

Read Abraham’s full paper on Li-ion safety and building better batteries.

EV Charging StationCurrently, electric vehicles depend on a complex interplay of batteries and supercapacitors to get you where you’re going. But a recently published paper, co-authored by ECS Fellow Hector Abruna, details the development of a new material that can take away some of the complexity of EVs.

“Our material combines the best of both worlds — the ability to store large amounts of electrical energy or charge, like a battery, and the ability to charge and discharge rapidly, like a supercapacitor,” says William Dichtel, lead author of the study.

This from Northwestern University:

[The research team] combined a COF — a strong, stiff polymer with an abundance of tiny pores suitable for storing energy — with a very conductive material to create the first modified redox-active COF that closes the gap with other older porous carbon-based electrodes.

(more…)