Nano-chimney to Cool Circuits

Overheating has emerged as a primary concern in the development of new electronic devices. A new study from Rice University looks to provide a solution to that, offering a strategy to vent heat away from nano-electronics through cone-like chimneys.

By putting these “chimneys” between the graphene and nanotube, the researchers effectively eliminate a barrier that typically blocks heat from escaping.

This from Rice University:

Researchers at Rice University discovered through computer simulations that removing atoms here and there from the two-dimensional graphene base would force a cone to form between the graphene and the nanotube. The geometric properties of the graphene-to-cone and cone-to-nanotube transitions require the same total number of heptagons, but they are more sparsely spaced and leave a clear path of hexagons available for heat to race up the chimney.

Read the full article.

“Our interest in advancing new applications for low-dimensional carbon—fullerenes, nanotubes, and graphene—is broad,” says theoretical physicist Boris Yakobson, co-author of the paper. “One way is to use them as building blocks to fill three-dimensional spaces with different designs, creating anisotropic, nonuniform scaffolds with properties that none of the current bulk materials have. In this case, we studied a combination of nanotubes and graphene, connected by cones, motivated by seeing such shapes obtained in our colleagues’ experimental labs.”

DISCLAIMER

All content provided in the ECS blog is for informational purposes only. The opinions and interests expressed here do not necessarily represent ECS's positions or views. ECS makes no representation or warranties about this blog or the accuracy or reliability of the blog. In addition, a link to an outside blog or website does not mean that ECS endorses that blog or website or has responsibility for its content or use.

Post Comments

Your email address will not be published. Required fields are marked *