Solar Cells Take Inspiration from Art

One of the more common issues with solar cell efficiency is their inability to move with the sun as it crosses the sky. While large scale solar panels can be fitted with bulky motorized trackers, those with rooftop solar panels do not have that luxury. In an effort to solve this issues, researchers are drawing some inspiration from art in their mission toward higher solar efficiency.

Scientists are applying some of the shapes and designs from the ancient art of kirigami—the Japanese art of paper cutting—to develop a solar cell that can capture up to 36 percent more energy due to the design’s ability to grab more sun.

“The design takes what a large tracking solar panel does and condenses it into something that is essentially flat,” said Aaron Lamoureux, a doctoral student in materials science and engineering and first author on the paper.

In the United States alone, there are currently over 20,000 MW of operational solar capacity. Nearly 640,000 U.S. homes have opted to rely on solar power. However, if the home panels were able to follow the sun’s movement on a daily basis, we could see a dramatic increase in efficiency and usage.

“The beauty of our design is, from the standpoint of the person who’s putting this panel up, nothing would really change,” said Max Shtein, associate professor of materials science and engineering. “But inside, it would be doing something remarkable on a tiny scale: the solar cell would split into tiny segments that would follow the position of the sun in unison.”

This from the University of Michigan:

The optimized design is effective because it stretches easily, allowing a lot of tilt without losing much width. According to the team’s simulations of solar power generation during the summer solstice in Arizona, it is almost as good as a conventional single-axis tracker, offering a 36 percent improvement over a stationary panel. Conventional trackers produce about 40 percent more energy than stationary panels under the same conditions, but they are bulky, prone to catching the wind and ten or more times heavier.

Read the full article here.

If the development proves successful, the already growing solar industry could see another boom.

[Image: Michigan State University]

Check out more research happening in solar energy.

DISCLAIMER

All content provided in the ECS blog is for informational purposes only. The opinions and interests expressed here do not necessarily represent ECS's positions or views. ECS makes no representation or warranties about this blog or the accuracy or reliability of the blog. In addition, a link to an outside blog or website does not mean that ECS endorses that blog or website or has responsibility for its content or use.

Post Comments

Your email address will not be published. Required fields are marked *