By: William Messner, Tufts University

Driverless carWhen a May 2016 crash killed the person operating a Tesla Model S driving in Autopilot mode, advocates of autonomous vehicles feared a slowdown in development of self-driving cars.

Instead the opposite has occurred. In August, Ford publicly committed to field self-driving cars by 2021. In September, Uber began picking up passengers with self-driving cars in Pittsburgh, albeit with safety drivers ready to take over.

October saw Tesla itself undeterred by the fatality. The company began producing cars it said had all the hardware needed for autonomous operation; the software will be written and added later. In December, days after Michigan established regulations for testing autonomous vehicles in December, General Motors started doing just that with self-driving Chevy Bolts. And just one day before the end of his term, U.S. Secretary of Transportation Anthony Foxx designated 10 research centers as official test sites for automated vehicle systems.

Three of the most significant developments in the industry happened earlier this month. The 2017 Consumer Electronics Show (CES) in Las Vegas and the North American International Auto Show in Detroit saw automakers new and old (and their suppliers) show off their plans and innovations in this arena. And the National Transportation Safety Board (NTSB) issued its report on the Tesla fatality. Together, they suggest a future filled with driverless cars that are both safer than today’s vehicles and radically different in appearance and comfort.

(more…)

By: David Danks, Carnegie Mellon University

Autonomous driverless carIn 2016, self-driving cars went mainstream. Uber’s autonomous vehicles became ubiquitous in neighborhoods where I live in Pittsburgh, and briefly in San Francisco. The U.S. Department of Transportation issued new regulatory guidance for them. Countless papers and columns discussed how self-driving cars should solve ethical quandaries when things go wrong. And, unfortunately, 2016 also saw the first fatality involving an autonomous vehicle.

Autonomous technologies are rapidly spreading beyond the transportation sector, into health care, advanced cyberdefense and even autonomous weapons. In 2017, we’ll have to decide whether we can trust these technologies. That’s going to be much harder than we might expect.

Trust is complex and varied, but also a key part of our lives. We often trust technology based on predictability: I trust something if I know what it will do in a particular situation, even if I don’t know why. For example, I trust my computer because I know how it will function, including when it will break down. I stop trusting if it starts to behave differently or surprisingly.

In contrast, my trust in my wife is based on understanding her beliefs, values and personality. More generally, interpersonal trust does not involve knowing exactly what the other person will do – my wife certainly surprises me sometimes! – but rather why they act as they do. And of course, we can trust someone (or something) in both ways, if we know both what they will do and why.

I have been exploring possible bases for our trust in self-driving cars and other autonomous technology from both ethical and psychological perspectives. These are devices, so predictability might seem like the key. Because of their autonomy, however, we need to consider the importance and value – and the challenge – of learning to trust them in the way we trust other human beings.

Autonomy and predictability

We want our technologies, including self-driving cars, to behave in ways we can predict and expect. Of course, these systems can be quite sensitive to the context, including other vehicles, pedestrians, weather conditions and so forth. In general, though, we might expect that a self-driving car that is repeatedly placed in the same environment should presumably behave similarly each time. But in what sense would these highly predictable cars be autonomous, rather than merely automatic?

(more…)

Driverless CarThe death of a person earlier this year while driving with Autopilot in a Tesla sedan, along with news of more crashes involving Teslas operating in Autopilot, has triggered a torrent of concerns about the safety of self-driving cars.

But there is a way to improve safety across a rapidly evolving range of advanced mobility technologies and vehicles – from semi-autonomous driver assist features like Tesla’s Autopilot to a fully autonomous self-driving car like Google’s.

The answer is connectivity: wireless communication that connects vehicles to each other, to the surrounding infrastructure, even to bicyclists and pedestrians. While connectivity and automation each provide benefits on their own, combining them promises to transform the movement of people and goods more than either could alone, and to do so safely. The U.S. Department of Transportation may propose requiring all new cars to have vehicle-to-vehicle communication, known as V2V, as early as this fall.

Tesla blamed the fatal crash on the failure of both its Autopilot technology and the driver to see the white tractor-trailer against a bright sky. But the crash – and the death – might have been avoided entirely if the Tesla and the tractor-trailer it hit had been able to talk to each other.

Limitations of vehicles that are not connected

Autonomous vehicles that aren’t connected to each other is a bit like gathering together the smartest people in the world but not letting them talk to each other. Connectivity enables smart decisions by individual drivers, by self-driving vehicles and at every level of automation in between.

Despite all the safety advances in recent decades, there are still more than 30,000 traffic deaths every year in the United States, and the number may be on the rise. After years of steady declines, fatalities rose 7.2 percent in 2015 to 35,092, up from 32,744 in 2014, representing the largest percentage increase in nearly 50 years, according to the U.S. DOT.

(more…)

Sparking the Driverless Car Era

We’ve been hearing about the new generation of vehicles for some time now. The self-driving, autonomous, electric car seemed to be so distant that it transformed into a pipe dream—until now. Tesla CEO Elon Musk announced this past week that Tesla’s self-driving cars will hit highways this summer.

On Thursday March 18, Musk arranged a press conference to talk about Tesla’s automobile software update that will eliminate range anxiety—or the fear that your electric car will run out of power before being able to recharge on long trips.

But that wasn’t the highlight of the press conference. Musk casually announced that beginning around June, all Tesla models well get an update that allows them to drive in “Autopilot” mode.

(more…)

UK Unveils Driverless Pods

If the three initial pods are successful, a fleet of 40 vehicles will be rolled out on the pavements of the UK.

If the three initial pods are successful, a fleet of 40 vehicles will be rolled out on the pavements of the UK.

The UK is setting itself up to be a world leader in driverless technology with the introduction of the LUTZ Pathfinder pod.

The vehicle is the UK’s first driverless car that is making its way past the testing phase and it poised to hit the roads later this year.

The electric-powered vehicle has 19 sensors and a light detection and ranging system, which measure distance by illuminating a target with a laser and analyzing the reflected light.

With a range of 40 miles, the vehicle can last eight hours of continuous travel on one charge. However, it maxes out at top speeds of 15 mph.

(more…)

GM Cars Will Soon Know When You’re Distracted

Thanks in large part to scientific breakthroughs in sensors, cars have been getting smarter – and soon they’ll be able to tell if you’re distracted behind the wheel.

General Motors and Australian company Seeing Machines have landed a 15 year deal to create sensors that will detect when drivers are distracted.

Read the full article here.

This from the company news release:

The Seeing Machines’ Operator Monitoring System is based on patented eye-tracking technology that uses sensing equipment that requires no re-calibration between different drivers and tracks head alignment for potential distraction of the driver.

The sensors are another addition to the technology that could assist in the creation of the fully driverless car. With the United Services Auto Association noting that auto-breaks, collision assurance, and adaptive cruise control potentially coming to a car dealership near you, it is apparent that our cars are getting smarter.

Though we may be several decades away from these fully driverless cars, the sensor technology in automobiles is assisting in driver safety through anti-distraction technology.

“Eye and head tracking technology is the next step in automotive safety, which we expect to play a significant role in the reduction of one of the greatest causes of accidents: driver distraction,” said Ken Kroeger, CEO of Seeing Machines. “We strongly believe that the addition of driver monitoring to ADAS will deliver a significant improvement to the safety of drivers, passengers and pedestrians.”

Learn more sensor science and technology and their global impact via ECS’s Digital Library.