Reutilizing carbon dioxide to produce clean burning fuels

Carbon dioxide

David Go has always seen himself as something of a black sheep when it comes to his scientific research approach, and his recent work in developing clean alternative fuels from carbon dioxide is no exception.

In 2015, Go and his research team at the University of Notre Dame were awarded a $50,000 grant to purse innovative electrochemical research in green energy technology through the ECS Toyota Young Investigator Fellowship. With a goal of aiding scientists in advancing alternative energies, the fellowship aims to empower young researchers in creating next-generation vehicles capable of utilizing alternative fuels that can lead to climate change action in transportation.

The road less traveled

While advancing research in electric vehicles and fuel cells tend to be the top research areas in sustainable transportation, Go and his team is opting to go down the road less traveled through a new approach to green chemistry: plasma electrochemistry.

(MORE: Read Go’s Meeting Abstract on this topic, entitled “Electrochemical Reduction of CO2(aq) By Solvated Electrons at a Plasma-Liquid Interface.”)

“Our approach to electrochemistry is completely a-typical,” Go, associate professor at the University of Notre Dame, says. “We use a technique called plasma electrochemistry with the aim of processing carbon dioxide – a pollutant – back into more useful products, such as clean-burning fuels.”

(more…)

In a push for more basic research funding for electrochemical science, past ECS President Daniel Scherson testified before a U.S. House subcommittee to discuss innovations in solar fuels, electricity storage, and advanced materials.

“I want them to understand where electrochemistry fits in many aspects of our lives,” Scherson, the Frank Hovorka Professor of Chemistry at Case Western Reserve University, said prior to the hearing.

During the hearing, Scherson emphasized to the subcommittee that in order to solve some of society’s most pressing problems, more federal funding to basic electrochemistry research is critical. He further explained that without efforts in electrochemistry, nearly all aspects of energy storage and conversion – including batteries, fuels cells, EVs, and wind and solar energy – would cease to be viable.

“Electrochemistry is a two century old discipline that has reemerged in recent years as a key to achieve sustainability and improve human welfare,” Scherson told the subcommittee.

In recent years, budget cuts in federal spending have adversely affected scientific research. In April of this year, Sen. Jeff Flake (R-Ariz.) launched an attack on federal research dollars in the form of the Wastebook – a report detailing specific studies that the senator believes to be wasteful spending.

(more…)

Montreal Electrochemistry Workshop

On January 22, 2016, the ECS Montreal Student Chapter hosted its first ever electrochemistry workshop. The focus of the workshop was the fabrication of silver-silver chloride reference electrodes, a staple of most electrochemistry experiments.

ECS Mtl Student Chapter - Electrochemistry Workshop Summary 3

 

 

 

 

The workshop included a short presentation discussing the theoretical aspects of references electrodes, after which students could observe a demonstration. Finally, each student was allowed to perform the fabrication protocol and everyone brought home their own reference electrode!

(more…)

HIV and hepatitis C are among the leading causes of worldwide death. According to amfAR, an organization dedicated to eradicating the spread of HIV/AIDS through innovative research, nearly 37 million people are currently living with HIV. Of those 37 million, one third become co-infected with hepatitis C.

The threat of HIV and hepatitis C

The regions hit the hardest by this co-infection tend to be developing parts of the world, such as sub-Saharan Africa and Central and East Asia.

While these developing regions have measures to diagnosis HIV and hepatitis C, the rapid point-of-care tests used are typically unaffordable or unreliable.

An electrochemical solution

A group from McGill University is looking to change that with a recently developed, paper-based electrochemical platform with multiplexing and telemedicine capabilities that may enable low-cost, point-of-care diagnosis for HIV and hepatitis C co-infections within serum samples.

(more…)

An article by Shelley D. Minteer and Henry White as part of the JES Focus Issue Honoring Allen J. Bard.

Allen J. Bard AwardThe Electrochemical Society founded the Allen J. Bard Award in 2013 to honor Prof. Allen J. Bard’s extensive contributions in the field of electrochemistry, and the first award was given in May 2015 at the ECS meeting in Chicago. In recognition of the establishment of this endowed award, we are delighted to dedicate this special issue of the Journal of The Electrochemical Society to Professor Bard.

Allen was born in New York City in 1933 and obtained his Bachelor of Science degree in Chemistry at City College of New York 1955. He continued his studies at Harvard University under the supervision of James J. Lingane, a renowned electroanalytical chemist, and received a Master’s degree in 1956 and a PhD in 1958. He then accepted an instructor position at the University of Texas and quickly moved up the ranks to Professor in 1967.

In the 58 years since arriving in Austin, Allen has mentored over 75 PhD students and 150 post-doctoral fellows. Their combined contributions to the field of electrochemistry are legendary, including electroanalytical techniques for evaluating electrode reaction mechanisms, simultaneous electrochemistry electron spin resonance (SEESR) techniques, nonaqueous solvents for investigating energetic species, electrogenerated chemiluminescence (ECL), polymer modified electrodes, semiconductor photoelectrochemistry, photocatalysis, scanning electrochemical microscopy (SECM), and single-particle collision electrochemistry.

(more…)

Christian Amatore has given a new direction to electrochemistry and has had a pioneering role in the development of ultramicroelectrodes worldwide. He is currently the Director of Research at CNRS and will be giving the ECS Lecture at the 229th ECS Meeting in San Diego, CA, May 29-June 2, 2016. His talk is titled, “Seeing, Measuring and Understanding Vesicular Exocytosis of Neurotransmitters.”

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

(more…)

ECS will be offering five short courses at the 229th ECS Meeting this year in San Diego.

What are short courses? Taught by academic and industry experts in intimate learning settings, short courses offer students and professionals alike the opportunity to greatly expand their knowledge and technical expertise. 

Short Course #2: Fundamentals of Electrochemistry: Basic Theory and Thermodynamic Methods

Jamie Noël, Instructor

This course covers the basic theory and application of electrochemical science. It is targeted toward people with a physical sciences or engineering background who have not been trained as electrochemists, but who want to add electrochemical methods to their repertoire of research approaches. There are many fields in which researchers originally approach their work from another discipline but then discover that it would be advantageous to understand and use some electrochemical methods to complement the work that they are doing. The course begins with a general, basic foundation of electrochemistry and uses it to develop the theory and experimental approaches to electrochemical problems of a thermodynamic nature. It complements a sister course, “Fundamentals of Electrochemistry: Basic Theory and Kinetic Methods”, offered alternately by the same instructor. The two courses have different emphasis, and each is designed to be a stand-alone introduction to electrochemical fundamentals. If both courses are desired, they can be taken in either order.

(more…)

Some people strive to continue family tradition, while others prefer to cut their own path. Patrick Linford, grandson of prestigious electrochemist Henry Linford, happens to be stepping into his grandfather’s shoes merely by coincidence.

“If you’d rewind my life to last year, I had no idea what electrochemistry actually was,” says Linford.

Linford, current graduate student at the Massachusetts Institute of Technology (MIT) and U.S. Army Officer, was always fascinated by science and the technical side of things. Despite Linford’s grandfather dying a few years before his birth, their academic and career paths have many similarities.

More Sustainable Energy

Currently, Linford is conducting research in alternative energy—specifically, thermogalvanic batteries to power wireless sensors using waste heat.

“This work has tremendous applications in both the military realm and on the civilian side,” says Linford.

(more…)

Honoring Dr. Allen Bard

Henry White and Allen Bard

Henry White and Allen J. Bard at the 227th ECS Meeting in Chicago, IL

This past May, ECS presented Dr. Henry White with the first ever Allen J. Bard Award at the 227th ECS Meeting in Chicago. A former student of Bard himself, Dr. White has worked with his research team to advance new methods to determine the structure of biological polymers like DNA, develop novel batteries with increased energy storage capacity, and investigate the delivery of drugs through human skin via electrical currents. ECS is delighted to begin the tradition of the Allen J. Bard Award so auspiciously.

Yet, the inaugural presentation of the Bard Award at the 227th ECS Meeting was also a culmination: the satisfying conclusion to a story of hard work and generosity and the enduring connection between an educator and the lives he impacted. The desire to create an award in honor of Dr. Bard first arose in May 2013. Through the generous outpouring of many of Bard’s former students, ECS was able to fully endow the award in only two years. Thanks to this support, the Allen J. Bard Award will continue to honor the achievements of outstanding electrochemists for years to come. Below, please see a timeline of the Allen J. Bard Award, including some of Dr. Bard’s major accomplishments.

To further celebrate the impact of Dr. Bard, ECS now hopes to establish a symposium in his honor, which will occur in conjunction with the presentation of the award. Topics for the symposium will be guided by the award winner and by that spirit of creativity and intellectual adventurousness characteristic of Bard and his work.

To support the Bard Award endowment, please consider donating online.

13 New Job Postings in Electrochemistry

wordle 10ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid state science. Check out the latest openings that have been added to the board.

P.S. Employers can post open positions for free!

Electroanalytical Sales Scientist
Pine Research Instrumentation – Durham, NC
The position encompasses critical aspects of sales and support for the electrochemical instrumentation product line offered by Pine Research Instrumentation. This position couples deep understanding of electrochemical science with the ability to communicate and interact with other people. Successful individuals in this position enjoy the unique chance to blend interpersonal skills (for sales and marketing purposes) with scientific knowledge (for technical support and advice).

PhD Student in Electrochemical Conversion of Biomass
Ohio University – Athens, OH
The Center for Electrochemical Engineering Research (CEER) at Ohio University is searching for PhD students to join a team of researchers working on electrochemical conversion of biomass. The successful candidate will develop materials and processes for electrochemical conversion of biomass to fuels and industrial chemicals, including developing electrocatalysts and reactor systems. Product stream analysis is an integral component of this program.

(more…)

  • Page 3 of 9