By: Timothy H. Dixon, University of South Florida

Climate marchThis summer I worked on the Greenland ice sheet, part of a scientific experiment to study surface melting and its contribution to Greenland’s accelerating ice losses. By virtue of its size, elevation and currently frozen state, Greenland has the potential to cause large and rapid increases to sea level as it melts.

When I returned, a nonscientist friend asked me what the research showed about future sea level rise. He was disappointed that I couldn’t say anything definite, since it will take several years to analyze the data. This kind of time lag is common in science, but it can make communicating the issues difficult. That’s especially true for climate change, where decades of data collection may be required to see trends.

A recent draft report on climate change by federal scientists exploits data captured over many decades to assess recent changes, and warns of a dire future if we don’t change our ways. Yet few countries are aggressively reducing their emissions in a way scientists say are needed to avoid the dangers of climate change.

While this lack of progress dismays people, it’s actually understandable. Human beings have evolved to focus on immediate threats. We have a tough time dealing with risks that have time lags of decades or even centuries. As a geoscientist, I’m used to thinking on much longer time scales, but I recognize that most people are not. I see several kinds of time lags associated with climate change debates. It’s important to understand these time lags and how they interact if we hope to make progress.


Steven Chu is currently the William R. Kenan, Jr. Professor of Physics & Professor of Molecular & Cellular Physiology at Stanford University. You might know him better as the former U.S. Secretary of Energy, the first scientist to hold a Cabinet position.

He was also the director at the Lawrence Berkeley National Laboratory, Professor of Physics and Molecular Cell Biology at UC Berkeley, and head of the Quantum Electronics Research Department at AT&T Bell Laboratories.

His research includes optical nanoparticle probes and imaging methods for applications in biology and biomedicine and new approaches in lithium ion batteries, air filtration, and other nanotechnology applications.

Along with two colleagues, Chu won the 1997 Nobel Prize in Physics “for development of methods to cool and trap atoms with laser light.”

He is also going to give the ECS Lecture at the 232nd ECS Meeting this fall in National Harbor, Maryland.

Listen to the podcast and download this episode and others for free on Apple Podcasts, SoundCloud, Podbean, or our RSS Feed. You can also find us on Stitcher and Acast.


Researchers at Los Alamos National Laboratory (LANL) are taking a closer look at fuel cell catalysts in hopes of finding a viable alternative to the expensive platinum and platinum-group metal catalysts currently used in fuel cell electrodes. Developments in this area could lead to more affordable next-generation polymer electrolyte fuel cells for vehicles.

The research, led by ECS fellow Piotr Zelenay, looks at the fuel cell catalysts at the atomic level, providing unique insight into the efficiency of non-precious metals for automotive and other applications.

“What makes this exploration especially important is that it enhances our understanding of exactly why these alternative catalysts are active,” Zelenay says. “We’ve been advancing the field, but without understanding the sources of activity; without the structural and functional insights, further progress was going to be very difficult.”

This from LANL:

Platinum aids in both the electrocatalytic oxidation of hydrogen fuel at the anode and electrocatalytic reduction of oxygen from air at the cathode, producing usable electricity. Finding a viable, low-cost PGM-free catalyst alternative is becoming more and more possible, but understanding exactly where and how catalysis is occurring in these new materials has been a long-standing challenge. This is true, Zelenay noted, especially in the fuel cell cathode, where a relatively slow oxygen reduction reaction, or ORR, takes place that requires significant ‘loading’ of platinum.


In May 2017 during the 231st ECS Meeting, we sat down with Eric Wachsman, director and William L. Crentz Centennial Chair in Energy Research at the University of Maryland Energy Research Center. The conversation is led by Rob Gerth, ECS’s director of marketing and communications.

Wachsman is an expert in solid oxide fuel cells and other energy storage technologies. He’s the lead organizer of the 7th International Electrochemical Energy Summit, which will take place at the 232nd ECS Meeting in National Harbor, Maryland, October 1st through the 6th. His work in battery safety, water treatment, and clean energy development has gained international attention.

Listen to the podcast and download this episode and others for free on Apple Podcasts, SoundCloud, Podbean, or our RSS Feed. You can also find us on Stitcher and Acast.


SolarScientists have created a nanoscale light detector that can convert light to energy, combining both a unique fabrication method and light-trapping structures.

In today’s increasingly powerful electronics, tiny materials are a must as manufacturers seek to increase performance without adding bulk. Smaller is also better for optoelectronic devices—like camera sensors or solar cells—which collect light and convert it to electrical energy.

Think, for example, about reducing the size and weight of a series of solar panels, producing a higher-quality photo in low lighting conditions, or even transmitting data more quickly.

However, two major challenges have stood in the way: First, shrinking the size of conventionally used “amorphous” thin-film materials also reduces their quality. And second, when ultrathin materials become too thin, they are almost transparent—and actually lose some ability to gather or absorb light.

The new nanoscale light detector, a single-crystalline germanium nanomembrane photodetector on a nanocavity substrate, could overcome both of these obstacles.

“We’ve created an exceptionally small and extraordinarily powerful device that converts light into energy,” says Qiaoqiang Gan, associate professor of electrical engineering in the University at Buffalo’s School of Engineering and Applied Sciences and one of the paper’s lead authors. “The potential applications are exciting because it could be used to produce everything from more efficient solar panels to more powerful optical fibers.”


Carbon dioxideA new study describes the mechanics behind an early key step in artificially activating carbon dioxide so that it can rearrange itself to become the liquid fuel ethanol.

Solving this chemical puzzle may one day lead to cleaner air and renewable fuel.

The scientists’ ultimate goal is to convert harmful carbon dioxide (CO2) in the atmosphere into beneficial liquid fuel. Currently, it is possible to make fuels out of CO2—plants do it all the time—but researchers are still trying to crack the problem of artificially producing the fuels at large enough scales to be useful.

Theorists at Caltech used quantum mechanics to predict what was happening at atomic scales, while experimentalists at the Department of Energy’s (DOE) Lawrence Berkeley National Lab (Berkeley Lab) used X-ray studies to analyze the steps of the chemical reaction.

“One of our tasks is to determine the exact sequence of steps for breaking apart water and CO2 into atoms and piecing them back together to form ethanol and oxygen,” says William Goddard professor of chemistry, materials science, and applied physics, who led the Caltech team. “With these new studies, we have better ideas about how to do that.”


The 231st ECS Meeting took place last week in New Orleans, LA, where Way Kuo, president at City University of Hong Kong, delivered the ECS Lecture, “A Risk Look at Energy Development.” In his talk, Kuo highlighted the many risks we face every day, ranging from air pollution to auto accidents to cyber-attacks. While those risks exist, Kuo pointed out that the biggest risk today is energy and energy safety, including issues of energy consumption, global warming, and sustainability.

“Renewable energies have witnessed rapid development in recent years worldwide in a concerted effort to curb greenhouse gas emissions,” Kuo wrote in his meeting abstract. “And yet, wind power production still constitutes only 4% in the global power mix and solar PV represents 1%, while fossil fuels remain the world’s dominant energy source, accounting for around 65%. Coal, the main culprit for greenhouse gas emissions, represents 43% of fossil fuels, even though the coal-fired generation share of total electricity production is declining, and still causes 7 million death a year due to air pollution, according to the United Nations. Any discussion of energies today cannot neglect nuclear energy as a key base-load power, despite concerns about possible radiation leaks and nuclear waste.”

Recently, Kuo wrote an article in the South China Morning Post, where he discussed the importance of properly capturing and analyzing scientific data, which will improve our ability to predict and respond to disasters. The article, which was adapted from Kuo’s ECS Lecture, analyzes security issues related to everything from terrorism to foodborne illness.


By: Erin Baker, University of Massachusetts Amherst

Renewable grideThe U.S. Department of Energy spends US$3-$4 billion per year on applied energy research. These programs seek to provide clean and reliable energy and improve our energy security by driving innovation and helping companies bring new clean energy sources to market. The Conversation

President Trump’s detailed budget request reportedly will ask Congress to cut funding for the Energy Department’s clean energy programs by almost 70 percent, from $2 billion this year to $636 million in 2018. Clean energy advocates and environmental groups strongly oppose such drastic cuts, but some reductions are likely. Where should DOE focus its limited funding to produce the greatest energy and environmental benefits?

My colleagues Laura Diaz Anadon of Cambridge University and Valentina Bosetti of Bocconi University and I recently reviewed 15 studies that asked this question. We found a number of clean energy technologies in electricity and transportation that will help us slow climate change by reducing greenhouse gas emissions, even at lower levels of investment.


By: Joshua D. Rhodes, University of Texas at Austin; Michael E. Webber, University of Texas at Austin; Thomas Deetjen, University of Texas at Austin, and Todd Davidson, University of Texas at Austin

SolarU.S. Secretary of Energy Rick Perry in April requested a study to assess the effect of renewable energy policies on nuclear and coal-fired power plants. The Conversation

Some energy analysts responded with confusion, as the subject has been extensively studied by grid operators and the Department of Energy’s own national labs. Others were more critical, saying the intent of the review is to favor the use of nuclear and coal over renewable sources.

So, are wind and solar killing coal and nuclear? Yes, but not by themselves and not for the reasons most people think. Are wind and solar killing grid reliability? No, not where the grid’s technology and regulations have been modernized. In those places, overall grid operation has improved, not worsened.

To understand why, we need to trace the path of electrons from the wall socket back to power generators and the markets and policies that dictate that flow. As energy scholars based in Texas – the national leader in wind – we’ve seen these dynamics play out over the past decade, including when Perry was governor.


BatteryTaking a detailed look inside energy storage systems could help solve potential issues before they arise. A team of researchers from Brookhaven National Laboratory are doing just that by imaging the inner workings of a sodium-metal sulfide battery, leading them to understand the cause of degraded performance.

“We discovered that the loss in battery capacity is largely the result of sodium ions entering and leaving iron sulfide—the battery electrode material we studied—during the first charge/discharge cycle,” says Jun Wang, co-author of the study. “The electrochemical reactions involved cause irreversible changes in the microstructure and chemical composition of iron sulfide, which has a high theoretical energy density. By identifying the underlying mechanism limiting its performance, we seek to improve its real energy density.”

Performance degradation in charge/discharge cycles has been the main problem researchers encounter when pursuing sodium-ion battery research. While the battery’s performance points to degradation issues, not much was previously known about what caused this degradation.