Turning Hydrogen Into “Graphene”

A comparison of the basic ring structure of the carbon compound graphene with that of a similar hydrogen-based structure synthesized by Carnegie scientists.Credit: Carnegie Science

A comparison of the basic ring structure of the carbon compound graphene with that of a similar hydrogen-based structure synthesized by Carnegie scientists.
Credit: Carnegie Science

A new study shows remarkable parallels between hydrogen and graphene under extreme pressures.

The study was conducted by Carnegie’s Ivan Naumov and Russell Hemley, and can be found in the December issue of Accounts of Chemical Research.

Because of hydrogen’s simplicity and abundance, it has long been used as a testing ground for theories of the chemical bond. It is necessary to understand chemical bonding in extreme environments in order to expand our knowledge of a broad range of conditions found in the universe.

It has always been difficult for researchers to observe hydrogen’s behavior under very high pressure, until recently when teams observed the element at pressures of 2-to-3.5 million times the normal atmospheric pressure.

Under this pressure, it transforms into an unexpected structure that consists of layered sheets, rather than close-packed metal – which had been the prediction of scientists many years ago.

(more…)

First Solar-Powered Bike Lane in Netherlands

SolaRoad coverts sunlight on the road surface into electricity: the road network works as an inexhaustible source of green power.Credit: SolaRoad

SolaRoad converts sunlight on the road surface into electricity: the road network works as an inexhaustible source of green power.
Credit: SolaRoad

A solar-powered cycle path – called SolaRoad – has been unveiled in the Netherlands. The path can generate enough electricity to power three households, reports BBC.

The new path has been installed in Kormmenie, which is 25 kilometers from Amsterdam. While the path is currently 70 meters long, it will be extended to 100 meters by 2016.

Dr. Sten de Wit from SolaRoad believes that this is just the beginning for solar-powered paths. Dr. de Wit foresees solar roads eventually being used to power the electric vehicles that use them, similar to Dutch developer Heijmans and designer Daan Roosegaard in their “smart highway.”

(more…)

Member Spotlight – Chanyuan Liu

Chanyuan Liu

Chanyuan Liu, ECS member and Ph.D. student at the University of Maryland, is the lead author on the nanopore study.
Credit: University of Maryland

The Electrochemical Society’s Chanyuan Liu, along with a team of University of Maryland researchers, believe they have developed a structure that could bring about the ultimate miniaturization of energy storage components.

The tiny structure, known as the nanopore, includes all the components of a battery and can be fully charged in 12 minutes and recharged thousands of times.

This from University of Maryland:

The structure is called a nanopore: a tiny hole in a ceramic sheet that holds electrolyte to carry the electrical charge between nanotube electrodes at either end. The existing device is a test, but the bitsy battery performs well.

(more…)

Norwegian entrepreneur, Jostein Eikeland, is finally unveiling the development his has been working on in secret for the past decade in hopes to jolt the world of energy storage.

Eikeland and his company Alevo plan to reveal a battery that will last longer and cost far less than the current rival technologies. To do this, they have developed a technology that is to store excess electricity generated by power plants.

This from Reuters:

The company has created what it calls GridBanks, which are shipping containers full of thousands of battery cells. Each container can deliver 2 megawatts of power, enough to power up to 1,300 homes for an hour. The batteries use lithium iron phosphate and graphite as active materials and an inorganic electrolyte – what Eikeland called the company’s “secret sauce” – that extends longevity and reduces the risk of burning. They can be charged and discharged over 40,000 times, the company said.

(more…)

The Future of Energy Storage

The modified graphene aerogels are promising for high-power electrical energy storage applications due to their high surface area and excellent conductivity.Credit: Ryan Chen

The modified graphene aerogels are promising for high-power electrical energy storage applications due to their high surface area and excellent conductivity.
Credit: Ryan Chen

We all know the buzz around graphene, but now researchers from Lawrence Livermore National Laboratory have found a way to improve upon this ultra-light material to boost the efficiency of your personal electronics.

The team at Lawrence Livermore have turned to graphene aerogel for enhanced electrical energy storage. This new generation of graphene has the potential to smooth power fluctuations in the energy grid, among other things.

(more…)

Major Breakthrough on Fusion Energy Project

The magnetic coils inside the compact fusion (CF) experiment are critical to plasma containment, as pictured in this undated handout photo

The magnetic coils inside the compact fusion experiment pictured in an undated photo provided by Lockheed Martin.
Credit: Reuters/Lockheed Martin

A few days ago we talked about fusion reactors and the new development out of the University of Washington that hopes to makes fusion a reality. Now we’re talking fusion again – only on a much different scale.

Lockheed Martin is making headlines for their announcement that their compact fusion reactors could be functional within one decade.

The company has been working for some time to develop a source of infinite energy, and have been devoting much time to fusion due to its clean and safe properties.

Their work on compact fusion revolves around the idea of using a high fraction of the magnetic field pressure, or all of its potential, to make devices much smaller than previous concepts. If they can achieve this, a reactor small enough to fit on a truck could provide enough power for a small city of up to 100,000 people.

(more…)

UW Reactor Could Make Fusion a Reality

The reactor uses a tokamak design, which is a giant torus surrounded on the sides and in the core by superconducting magnets generating tremendous energy.Credit: University of Washington

The reactor uses a tokamak design, which is a giant torus surrounded on the sides and in the core by superconducting magnets generating tremendous energy.
Credit: University of Washington

Fusion energy appears to be the future of energy storage – or at least it should be. Fusion energy yields zero greenhouse gas emissions, no long-lived radioactive waste, and a nearly unlimited fuel supply.

Up until this point, there has been an economic roadblock in producing this type of energy. The designs that have been penciled out to create fusion power are too expensive and won’t feasibly outperform systems that use fossil fuels.

Now, the engineers at the University of Washington (UW) are hoping to change that. They have designed a concept for a fusion reactor, that when scaled up, would rival costs of fossil fuel plants with similar electrical outputs.

This from the University of Washington:

The design builds on existing technology and creates a magnetic field within a closed space to hold plasma in place long enough for fusion to occur, allowing the hot plasma to react and burn. The reactor itself would be largely self-sustaining, meaning it would continuously heat the plasma to maintain thermonuclear conditions. Heat generated from the reactor would heat up a coolant that is used to spin a turbine and generate electricity, similar to how a typical power reactor works.

Read the full article here.

Currently, the University of Washington’s concept is about one-tenth the size and power output of a final product, which would still be years away.

Does the future of energy interest you? Check out what our Energy Technology Division has to offer. And head over to our Digital Library to see what our scientists are researching in the field of energy storage and conversion.

The researchers at Virginia Tech have successfully demonstrated the concept of a sugar biobattery that can completely convert the chemical energy in sugar substrates into electricity. Credit: Virginia Tech University

The researchers at Virginia Tech have successfully demonstrated the concept of a sugar biobattery that can completely convert the chemical energy in sugar substrates into electricity.
Credit: Virginia Tech University

According to new studies, the future of energy storage and conversion may be something that’s sitting in your kitchen cupboard.

A new breakthrough out of Virginia Tech demonstrates that a sugar-powered biobattery has the potential to outperform the current lithium-ion batteries on many fronts.

Not only is the energy density of the sugar-powered battery significantly higher than that of the lithium-ion battery, but the sugar battery is also less costly than the li-ion, refillable, environmentally friendly, and nonflammable.

This from LiveScience:

This nature-inspired biobattery is a type of enzymatic fuel cell (EFC) — an electrobiochemical device that converts chemical energy from fuels such as starch and glycogen into electricity. While EFCs operate under the same general principles as traditional fuel cells, they use enzymes instead of noble-metal catalysts to oxidize their fuel. Enzymes allow for the use of more-complex fuels (such as glucose), and these more-complex fuels are what give EFCs their superior energy density.

Read the full article here.

The scientists hope to increase the power density, extend the lifetime, and reduce the cost of electrode materials in order for this energy-dense sugar biobattery to become the technology of the future.

Find the full findings in this issue of Nature Communications.

Learn more about this topic by reading a recently published open access article via ECS’s Digital Library.

Energy Storage World Forum – Rome 2015

Energy Storage World Forum

From the Energy Storage World Forum in London 2014.

Energy Storage World Forum – Rome 2015
Rome, Italy
May 19-21, 2015

The 8th Energy Storage World Forum in 2015 will take place in Rome and will include The 3rd Microgrid Forum and The 2nd Residential Energy Storage Forum.

This 3 events in one location will save you time and money and will feature over 25 Utilities/TSOs/DSOs and End Users such as TERNA, E.ON, UK POWER NETWORKS, EDF etc.

Find out more.

For speaking, sponsorship inquiries contact: emily@energystorageforum.com

Don’t forget the 2014 ECS and SMEQ (Sociedad Mexicana de Electroquímica)
Joint International Meeting October 5-9, 2014. Learn more.

  • Page 11 of 11