How to Make Solar Work

Solar energyGlobal energy demands are predicted to reach 46 terawatts by 2100. That number is a far reach from the 18 terawatts of energy currently generated around the world. According to one expert in the field, a major shift in the way we produce and consume energy is necessary in order to meet future demands.

Meng Tao, ECS member and Arizona State University professor, discussed how society could move toward meeting those demands at the PRiME 2016 meeting, where he presented his paper, “Terawatt Solar Photovoltaics: Roadblocks and Our Approaches.”

“We just cannot continue to consume fossil fuels the way we have for the last 200 years,” Tao told ECS. “We have to move from a fossil fuel infrastructure to a renewable infrastructure.”

For Tao, the world’s society cannot set on a path of “business as usual” by producing energy via coal, oil, and natural gas. And while solar energy has experienced a growth rate of nearly 45 percent in the last decade, it still only accounts for less than one percent of all electricity generated.

The shift to solar

Historically, solar technology soars when oil prices are at their highest. This is especially true during the oil embargo of the 1970s. During that time, private and public investments began to shift away from fossil fuels and toward solar and other renewable energies. That trend emerged again in the early 2000s when oil prices skyrocketed to a record-setting $140 per barrel.

“In the 1970s, the motivation to invest in solar and other forms of renewable energy was geopolitical,” Tao says. “Now, that motivation tends to focus more on the environment and sustainability.”

(more…)

Electric vehicleJust over ten years ago, the number of electric vehicles on the road could be counted in the hundreds. Now, more than 1.3 million EVs have been deployed across the globe. But even as EVs become a stronger force in the transportation sector, many buyers still cite one major deterrent in going electric: range anxiety.

Range anxiety refers to the fear that during longer trips, the EV battery may run out of energy and leave drivers stranded without a charging station. However, Ford, BMW, and VW are planning to but this fear to rest in Europe where they’re planning to develop a networking of charging stations along major highways.

The car companies believe this implementation of these stations will help enable long-rage travel and facilitate the mass-market adoption of EVs. Because current EVs cannot exceed a 300 mile driving range on single charge, the establishment of ultra-fast charging stations will help take away some of the anxiety drivers feel behind the wheel.

(more…)

Powin Energy, a company focused on creating dynamic energy storage solutions, recently announced their plan to install a 30 kW/40 kW-hour battery system at the University of Washington’s Washington Clean Energy Testbeds. The testbed facility was developed by UW to scale-up, prototype, test, and validate new clean energy solutions. Powin Energy hopes to assist the researchers at the facility in their quest to develop clean energy innovation.

“We’re excited about this installation at the University of Washington because it will give our technology a more rigorous workout than most real-world installations that don’t approach the far ends of usage parameters,” Virgil Beaston, CTO of Powin Energy, said in a statement.

Venkat Subramanian, technical editor of the Journal of The Electrochemical Society and UW professor, discussed this energy storage opportunity, stating the he and his team could “use the Powin BESS to measure the performance of energy devices and algorithms when integrated into real and simulated system environments.”

Powin’s partnership with UW comes after the company’s development of its newly patented Battery Pack Operating system, which was designed to make its way into the utility-scale storage market. The company has already installed a 2MW/8MW-hour battery system in Irvine, CA.

According to scientists at the University at Buffalo, a new glowing dye called BODIPY could be a central part of the liquid-based batteries that researchers are looking at to power our cars and homes.

BODIPY – or boron-dipyrromethene – is a fluorescent material that researchers believe could be an ideal material for stockpiling energy.

While the dye is fluorescent, that’s not what initially attracted scientists. According to new research, the dye has chemical properties that enables it to store electrons and participate in electron transfer. These two properties are critical for energy storage.

The new research shows that BODIPY-based batteries operate efficiently and display promising potential for longevity, functioning for more than 100 charge cycles.

“As the world becomes more reliant on alternative energy sources, one of the huge questions we have is, ‘How do we store energy?’ What happens when the sun goes down at night, or when the wind stops?” says lead researcher Timothy Cook, ECS member and assistant professor of chemistry at the University at Buffalo. “All these energy sources are intermittent, so we need batteries that can store enough energy to power the average house.”

What’s Next for Batteries

BatteryTwenty-sixteen marked the 25th anniversary of the commercialization of the lithium-ion battery. Since Sony’s move to commercialize the technology in 1991, the clunky electronics that were made possible by the development of the transistor have become sleek, portable devices that play an integral role in our daily lives – thanks in large part to the Li-ion battery.

“There would be no electronic portable device revolution without the lithium-ion battery,” Robert Kostecki, past chair of ECS’s Battery Division and staff scientist at Lawrence Berkeley National Laboratory, tells ECS.

Impact of Li-ion technology

Without Li-ion batteries, we wouldn’t have smartphones, tablets, or laptops – more so, electric vehicles would have a slim chance of competing in the transportation sector and dreams of large-scale energy storage for a renewable grid may be dashed. Without the Li-ion, there would be no Tesla. There would be no Apple. The landscape of Silicon Valley as we know it today would be vastly different.

While the battery may have hit the marketplace in the early ‘90s, pioneers such as Stanley Whittingham, Michael Thackeray, John Goodenough, and others began pushing the technology in the ‘70s and ‘80s.

In its initial years, Li-ion battery technology boomed. As the field gained more interest from researchers after commercialization, developments started pouring in that doubled, or in some cases, tripled the amount of energy the battery was able to store. While progress continued over the years, the pace began to slow. Incremental advances at the fundamental level opened new paths for small, portable electronics, but have not answered demands for large-scale grid storage or an electric vehicle battery that will allow for a drive range of over 300 miles on a single charge.

(more…)

Wind powerNew research shows another step forward in the goal of developing energy storage systems robust enough to store such intermittent sources as wind and solar on a large-scale.

Their work explores the opportunities in solid oxide cells (SOCs), which the group believes to be one of the best prospects in energy storage due to their high efficiency and wide range of scales.

ECS member John Irvine and his team from the University of St. Andrews have set out to overcome traditional barriers in this technology, developing a new method of electrochemical switching to simplify the manufacturing of the electrodes needed to deliver high, long-lasting energy activity.

This from the University of St. Andrews:

The results demonstrate a new way to produce highly active and stable nanostructures – by growing electrode nanoarchitectures under operational conditions. This opens exciting new possibilities for activating or reinvigorating fuel cells during operation.

(more…)

Solar-to-Hydrogen Production

The device is able to convert solar energy into hydrogen at a rate of 14.2 percent, and has already been run for more than 100 hours straight.
Image: Infini Lab/EPFL

One of the biggest barriers between renewables and widespread grid implementation has been the issue of intermittency. How can we meet a nation’s energy demands with solar when the sun goes down?

In an effort to move past these barriers toward a cleaner energy infrastructure, a new paper published in the Journal of The Electrochemical Society describes an effective, low-cost solution for storing solar energy.

The research team from Ecole Polytechnique Fédérale de Lausanne is looking to covert solar energy into hydrogen through water electrolysis. At its core, the concept revolves around using solar-produced electricity to split water molecules into hydrogen and oxygen, leaving clean hydrogen to be stored as future energy or even as a fuel.

But this idea is not new to the scientific community. However, the research published in JES provides answer to continuous barriers in this field related to stability, scaling, and efficiency.

(more…)

Renewable grideThe world’s next energy revolution is looming nearer.

In order to bolster this transformation, the U.S. Department of Energy has been funding 75 projects in the energy technology field, enabling cutting-edge research into energy conversion and storage. This effort is part of the DOE’s goal to “decarbonize” the U.S. energy infrastructure by the middle of the country.

One of the most promising projects funded by the DOE is led by ECS member Michael Aziz, where he and his team from Harvard are addressing challenges in grid energy storage.

Energy storage has become one of the largest barriers in the widespread implementation of renewables. By offering a cost-effective, efficient answer to energy storage, the issues of intermittency in power sources such as wind and solar could be answered.

Aziz and his team are addressing issues in energy storage with the development of a flow battery based on inexpensive organic molecules in a water-based electrolyte. The team is focusing on using quinone molecules, which can be found in such plant sources as rhubarb or even oil waste. The quinone molecules allow energy to be stored in a water-based solution at room temperature.

Aziz recently discussed some of his work in quinon-bromide flow batteries as part of the Journal of The Electrochemical Society Focus Issue on Redox Flow Batteries-Reversible Fuel Cells.

(more…)

Lithium-oxygen battery

Image: MIT

New lithium-oxygen battery technology proposed by researchers from MIT, Argonne National Laboratory, and Peaking University, promises a scalable, cheap, and safe option in energy storage.

There is immense promise for lithium-oxygen batteries in such applications as electric cars and portable electronics. In fact, they are between five and 15 times more efficient than lithium-ion batteries in transportation applications due to their high energy output potential in proportion to their weight.

But there have been complications in developing and especially implementing these batteries in the marketplace. Primarily, they’ve been known to waste energy and degrade quickly.

But this new study, co-authored by ECS member and past IMLB chair Khalil Amine, states that the theoretical potential for lithium-oxygen batteries could be met while overcoming some of the biggest barriers prohibiting the technology.

Once of the primary focuses of the group was overcoming the mismatch in voltages that happens in charging and discharging the battery. Because the output voltage is more than 1.2 volts lower that that used to charge, there is typically a significant power loss.

“You waste 30 percent of the electrical energy as heat in charging,” says Ju Li, professor at MIT and co-author of the paper. “It can actually burn if you charge it too fast.”

(more…)

Fuel cells have existed (at least in theory) since the early 1800s, but have spent much of their existence as laboratory curiosities. It wasn’t until the mid-1900s that fuel cells finally got their time in the spotlight with the first major application in the Gemini and Apollo space flights.

While fuel cells have moved forward in the competitive field of energy storage, there are still many barriers that researchers are attempting to overcome. Especially today, with society making a conscious effort to move toward more sustainable types of power, much emphasis has been put on solid oxide fuel cells and moving them from the lab to the market.

(MORE: Get additional information on the evolution of fuel cell technology.)

A team of researchers from Washington State University believes they may have taken a crucial step in doing just that.

Moving fuel cells forward

The team recently published a paper detailing what they believe to be a key step in SOFC improvement and eventually implementation in the marketplace. These small improvements could mean big changes.
SOFCs, unlike other types of fuel cells, do not require the use of expensive materials (i.e. platinum) to develop.

“Solid oxide fuel cells are very fuel flexible in contrast to other kinds of fuel cells, like alkaline fuel cells,” Subhash Singhal, Battelle Fellow Emeritus at Pacific Northwest National Laboratory and esteemed fuel cell expert, told ECS in a previous interview. “Solid oxide fuel cells can use a variety of fuel: natural gas, coal gas, and even liquid fuels like diesel and gasoline.”

(more…)