Catalysts

Image: MIT

The future of renewable energy heavily depends on energy storage technologies. At the center of these technologies are oxygen-evaluation reactions, which make possible such processes as water splitting, electrochemical carbon dioxide reduction, and ammonia production.

However, the kinetics of the oxygen-evolution reactions tend to be slow. But metal oxides involved in this process have catalytic activities that vary over several orders of magnitude, with some exhibiting the highest such rates reported to date. The origins of these activates are not well-understood by the scientific community.

A new study from MIT, led by 2016 winner of the Battery Division Research Award, Yang Shao-Horn, shows that in some of these catalysts, the oxygen does not only come from surrounding water molecules – some actually come from within the crystal lattice of the catalyst material itself.

(more…)

Renewable liquid fuelRenewable energy is on the rise, but how we store that energy is still up for debate.

“Renewable energy is growing, but it’s intermittent,” says Grigorii Soloveichik, program director at the United States Department of Energy’s Advanced Research Projects Agency. “That means we need to store that energy and we have two ways to do that: electricity or liquid fuels.”

According to Soloveichik, electricity and batteries are sufficient for short term energy storage, but new technologies such as liquid fuels derived from renewable energy must be considered for long term storage.

During the PRiME 2016 meeting in October, Soloveichik presented a talk titled, “Development of Transformational Technologies,” where he described the advantages that carbon neutral liquid fuels have over other convention means – such as batteries – for efficient, affordable, long term storage for renewable energy sources.

Rise of renewables

In the United States, 16.9 percent of electricity generation comes from renewables – a 9.3 percent increase since 2015. Globally, climate talks such as the Paris Agreement help bolster the rise of renewable energy around the world. Soloveichik expects that growth to continue in light of the affordability of clean energy technologies and government mandates that aim at environmental protection and a reduction of the carbon footprint. However, the continued rise in renewable dependence will impact the current grid infrastructure.

“More renewables will result in more stress on the grid,” Soloveichik says. “All of these new sources are intermittent, so we need to be able to store huge amounts of energy.”

(more…)

Battery Research for Higher Voltages

BatteryLithium-ion batteries supply billions of portable devices with energy. While current Li-ion battery designs may be sufficient for applications such as smartphones and tablets, the rise of electric vehicles and power storage systems demands new battery technology with new electrode materials and electrolytes.

ECS student member Michael Metzger is looking to address that issue by developing a new battery test cell that can investigate anionic and cationic reactions separately.

Along with Benjamin Strehle, Sophie Slochenbach, and ECS Fellow Hubert A. Gasteiger, Metzger and company published their new findings in the Journal of The Elechemical Society in two open access papers.

(READ: “Origin of H2 Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation” and “Hydrolysis of Ethylene Carbonate with Water and Hydroxide under Battery Operating Conditions“)

“Manufacturers of rechargeable batteries are building on the proven lithium-ion technology, which has been deployed in mobile devices like laptops and cell phones for many years,” says Metzger, the 2016 recipient of ECS’s Herbert H. Uhlig Summer Fellowship. “However, the challenge of adapting this technology to the demands of electromobility and stationary electric power storage is not trivial.”

(more…)

Flow batteryA team of researchers at Case Western Reserve University is building a flow battery prototype to provide cleaner, cheaper power.

The team, co-led by ECS member Bob Savinell, is working to scale up the technology in order develop a practical, efficient energy storage device that can store excess electricity and potentially augment the grid in light of a shift toward renewables.

With a $1.17 million federal grant, the team has started to build a 1-kilowatt prototype with enough power to run various, high-powered household devices for six hours.

“Intermittent energy sources, such as solar and wind, combined with traditional sources of coal and nuclear power, are powering the grid. To meet peak demand, we often use less-efficient coal or gas-powered turbines,” says Savinell, ECS Fellow and editor of the Journal of The Electrochemical Society. “But if we can store excess energy and make it available at peak use, we can increase the overall efficiency and decrease the amount of carbon dioxide emitted and lower the cost of electricity.”

One of the biggest barriers preventing the large-scale use of electrochemical energy storage devices has been the cost. To address this, Savinell and his team have been developing the flow battery with cheaper materials, such as iron and water.

(more…)

How to Make Solar Work

Solar energyGlobal energy demands are predicted to reach 46 terawatts by 2100. That number is a far reach from the 18 terawatts of energy currently generated around the world. According to one expert in the field, a major shift in the way we produce and consume energy is necessary in order to meet future demands.

Meng Tao, ECS member and Arizona State University professor, discussed how society could move toward meeting those demands at the PRiME 2016 meeting, where he presented his paper, “Terawatt Solar Photovoltaics: Roadblocks and Our Approaches.”

“We just cannot continue to consume fossil fuels the way we have for the last 200 years,” Tao told ECS. “We have to move from a fossil fuel infrastructure to a renewable infrastructure.”

For Tao, the world’s society cannot set on a path of “business as usual” by producing energy via coal, oil, and natural gas. And while solar energy has experienced a growth rate of nearly 45 percent in the last decade, it still only accounts for less than one percent of all electricity generated.

The shift to solar

Historically, solar technology soars when oil prices are at their highest. This is especially true during the oil embargo of the 1970s. During that time, private and public investments began to shift away from fossil fuels and toward solar and other renewable energies. That trend emerged again in the early 2000s when oil prices skyrocketed to a record-setting $140 per barrel.

“In the 1970s, the motivation to invest in solar and other forms of renewable energy was geopolitical,” Tao says. “Now, that motivation tends to focus more on the environment and sustainability.”

(more…)

Electric vehicleJust over ten years ago, the number of electric vehicles on the road could be counted in the hundreds. Now, more than 1.3 million EVs have been deployed across the globe. But even as EVs become a stronger force in the transportation sector, many buyers still cite one major deterrent in going electric: range anxiety.

Range anxiety refers to the fear that during longer trips, the EV battery may run out of energy and leave drivers stranded without a charging station. However, Ford, BMW, and VW are planning to but this fear to rest in Europe where they’re planning to develop a networking of charging stations along major highways.

The car companies believe this implementation of these stations will help enable long-rage travel and facilitate the mass-market adoption of EVs. Because current EVs cannot exceed a 300 mile driving range on single charge, the establishment of ultra-fast charging stations will help take away some of the anxiety drivers feel behind the wheel.

(more…)

Powin Energy, a company focused on creating dynamic energy storage solutions, recently announced their plan to install a 30 kW/40 kW-hour battery system at the University of Washington’s Washington Clean Energy Testbeds. The testbed facility was developed by UW to scale-up, prototype, test, and validate new clean energy solutions. Powin Energy hopes to assist the researchers at the facility in their quest to develop clean energy innovation.

“We’re excited about this installation at the University of Washington because it will give our technology a more rigorous workout than most real-world installations that don’t approach the far ends of usage parameters,” Virgil Beaston, CTO of Powin Energy, said in a statement.

Venkat Subramanian, technical editor of the Journal of The Electrochemical Society and UW professor, discussed this energy storage opportunity, stating the he and his team could “use the Powin BESS to measure the performance of energy devices and algorithms when integrated into real and simulated system environments.”

Powin’s partnership with UW comes after the company’s development of its newly patented Battery Pack Operating system, which was designed to make its way into the utility-scale storage market. The company has already installed a 2MW/8MW-hour battery system in Irvine, CA.

According to scientists at the University at Buffalo, a new glowing dye called BODIPY could be a central part of the liquid-based batteries that researchers are looking at to power our cars and homes.

BODIPY – or boron-dipyrromethene – is a fluorescent material that researchers believe could be an ideal material for stockpiling energy.

While the dye is fluorescent, that’s not what initially attracted scientists. According to new research, the dye has chemical properties that enables it to store electrons and participate in electron transfer. These two properties are critical for energy storage.

The new research shows that BODIPY-based batteries operate efficiently and display promising potential for longevity, functioning for more than 100 charge cycles.

“As the world becomes more reliant on alternative energy sources, one of the huge questions we have is, ‘How do we store energy?’ What happens when the sun goes down at night, or when the wind stops?” says lead researcher Timothy Cook, ECS member and assistant professor of chemistry at the University at Buffalo. “All these energy sources are intermittent, so we need batteries that can store enough energy to power the average house.”

What’s Next for Batteries

BatteryTwenty-sixteen marked the 25th anniversary of the commercialization of the lithium-ion battery. Since Sony’s move to commercialize the technology in 1991, the clunky electronics that were made possible by the development of the transistor have become sleek, portable devices that play an integral role in our daily lives – thanks in large part to the Li-ion battery.

“There would be no electronic portable device revolution without the lithium-ion battery,” Robert Kostecki, past chair of ECS’s Battery Division and staff scientist at Lawrence Berkeley National Laboratory, tells ECS.

Impact of Li-ion technology

Without Li-ion batteries, we wouldn’t have smartphones, tablets, or laptops – more so, electric vehicles would have a slim chance of competing in the transportation sector and dreams of large-scale energy storage for a renewable grid may be dashed. Without the Li-ion, there would be no Tesla. There would be no Apple. The landscape of Silicon Valley as we know it today would be vastly different.

While the battery may have hit the marketplace in the early ‘90s, pioneers such as Stanley Whittingham, Michael Thackeray, John Goodenough, and others began pushing the technology in the ‘70s and ‘80s.

In its initial years, Li-ion battery technology boomed. As the field gained more interest from researchers after commercialization, developments started pouring in that doubled, or in some cases, tripled the amount of energy the battery was able to store. While progress continued over the years, the pace began to slow. Incremental advances at the fundamental level opened new paths for small, portable electronics, but have not answered demands for large-scale grid storage or an electric vehicle battery that will allow for a drive range of over 300 miles on a single charge.

(more…)

Wind powerNew research shows another step forward in the goal of developing energy storage systems robust enough to store such intermittent sources as wind and solar on a large-scale.

Their work explores the opportunities in solid oxide cells (SOCs), which the group believes to be one of the best prospects in energy storage due to their high efficiency and wide range of scales.

ECS member John Irvine and his team from the University of St. Andrews have set out to overcome traditional barriers in this technology, developing a new method of electrochemical switching to simplify the manufacturing of the electrodes needed to deliver high, long-lasting energy activity.

This from the University of St. Andrews:

The results demonstrate a new way to produce highly active and stable nanostructures – by growing electrode nanoarchitectures under operational conditions. This opens exciting new possibilities for activating or reinvigorating fuel cells during operation.

(more…)