Researchers have captured organic nanoparticles colliding and fusing on video for the first time.

This unprecedented view of “chemistry in motion” will aid nanoscientists developing new drug delivery methods, as well as demonstrate how an emerging imaging technique opens a new window on a very tiny world.


AlgaeA nanoparticle that can help clean water of cadmium becomes toxic once taking in the metal. But research finds that organic matter, in this case from algae, reduces that toxicity.

Nanotechnology plays an important role in removing toxic chemicals found in the soil. Currently more than 70 Environmental Protection Agency (EPA) Superfund sites are using or testing nanoparticles to remove or degrade environmental contaminants. One of these—nano-zero-valent iron—is widely used, though its effect on organisms has not been examined.

In a recent experiment, a team of scientists tested the effect of sulfurized nano-zero-valent iron (FeSSi) on a common freshwater alga Chlamydomonas reinhardtii). They found that FeSSi picked up cadmium from a watery medium and alleviated cadmium toxicity to that alga for more than a month.


HydrogenSometimes the biggest advancements are the smallest in size.

A multidisciplinary team from Sandia National Laboratories recently demonstrated that notion by using nanoparticles and a nanoconfinement system to improve the performance of hydrogen storage materials. The researchers believe that this development is a step in the right direction to improve efficiency of hydrogen fuel cell electric vehicles.

Currently, hydrogen fuel cell electric vehicles store hydrogen as a high-pressure gas. However, the researchers argue that a solid material would be able to act like a sponge, with the ability to absorb and release hydrogen more efficiently. Using a hydrogen storage material of this nature could increase the amount of hydrogen able to be stored in a vehicle. In order to be efficient and competitive in the transportation sector, a hydrogen fuel cell electric vehicle would have to be able to travel 300 miles before refueling.

“There are two critical problems with existing sponges for hydrogen storage,” says Vitalie Stavila, co-author of the study and past ECS member. “Most can’t soak up enough hydrogen for cars. Also, the sponges don’t release and absorb hydrogen fast enough, especially compared to the 5 minutes needed for fueling.”


Improving Energy Storage

Nanoparticles have been central to many recent developments, including computing, communications, energy, and biology. However, because nanoparticles are hard to observe, it’s often difficult to pick the best shapes and sizes to perform specific tasks at optimal capacity.

That may be a problem no longer thanks to research out of Stanford University, where researchers gazed inside phase-changing nanoparticles for the first time – allowing them to understand how shape and crystallinity can have dramatic effects on performance.

Practically, this means that the design of energy storage materials could begin to change.

Take the lithium-ion battery, which stores and releases energy due to the electrode’s ability to sustain large deformations over several charge and discharge cycles without degrading. By nanosizing the electrode, researchers recently improved upon the efficiency process.


Tiny Particle, Big Results

EJ Taylor, ECS Treasurer and Chief Technical Officer at Faraday Technology, recently ran across this article from The Economist discussing an accidental discovery that could yield big results.

Materials scientists Wang Changan of Tsinghua University and Li Ju of MIT may have unintentionally found the answer to developing a battery that can last up to four times longer than the current generation.

Initially, the scientists were simply researching nanoparticles made of aluminum. While these tiny particles are good conductors of electricity, they become less efficient when exposed to air. When air hits these tiny particles, a coating of an oxide film begins to develop, greatly affecting the performance. The research the two scientists were working on was not to create a better battery, but rather to eliminate the oxide that coats the particles.

This from The Economist:

Their method was to soak the particles in a mixture of sulphuric acid and titanium oxysulphate. This replaces the aluminium oxide with titanium oxide, which is more conductive. However, they accidentally left one batch of particles in the acidic mixture for several hours longer than they meant to. As a result, though shells of titanium dioxide did form on them as expected, acid had time to leak through these shells and dissolve away some of the aluminium within. The consequence was nanoparticles that consisted of a titanium dioxide outer layer surrounding a loose kernel of aluminium.


Member Spotlight – Vilas Pol

Vilas Pol has assisting in discovering a nanoparticle network that could bright fast-charging batteries. He joined the Society in 2012.Credit: Argonne National Laboratory

Vilas Pol has assisted in the discovery of a nanoparticle network that could bring fast-charging batteries. He joined the Society in 2012.
Credit: Argonne National Laboratory

The Electrochemical Society’s Vilas Pol, along with a team of Purdue University researchers, has developed a nanoparticle network that could produce very fast-charging batteries.

This new electrode design for lithium-ion batteries has been shown to potentially reduce the charging time from hours to minutes, all by replacing the conventional graphite electrode with a network of tin-oxide nanoparticles.

This from Purdue University:

The researchers have performed experiments with a “porous interconnected” tin-oxide based anode, which has nearly twice the theoretical charging capacity of graphite. The researchers demonstrated that the experimental anode can be charged in 30 minutes and still have a capacity of 430 milliamp hours per gram (mAh g−1), which is greater than the theoretical maximum capacity for graphite when charged slowly over 10 hours.