Cow Manure Powers 1,000 Homes

A small-town farm in Plymouth, Indiana is doing its part to save the environment. The farm, and many other dairy farms across the country, are investing in biogas recovery systems that take unwanted cow manure and turn it into usable electricity. And not just a tiny bit of electricity. This system can produce enough power to light 1,000 homes.

The farm is grappling an issue that many small farms deal with: too much cow poop. Farms often times toss excess manure into open water to eliminate the small for surrounding neighbors. Doing this leads to a whole host of environmental consequences and negatively impacts the surrounding ecosystem.

In order to get rid of the bothersome manure without causing environmental damage, the farmers set up an anaerobic digester to speed up composition without smell or emission of greenhouse gases.

It’s not just this one farm that it doing its part to help the environment. The Environmental Protection Agency (EPA) estimates that last year alone, farmlands eliminated more than three million tons of greenhouse gases via biogas recovery systems. To put it in perspective, that’s like taking 630,000 pollutant causing cars off the road.

The EPA also estimates that if all viable farms were to install biogas recovery systems, they would generate enough electricity to power over a million homes and drastically cut emissions.

However, the roadblock appears when it comes to finding financing for these projects. Though, the federal government remains committed to seeing progress in this sector.

U.S. to Have Transformative Year in Energy

This year is shaping up to be a very green for the American energy sector. U.S. power emissions are expected to fall to a two-decade low in light of the year of “de-carbonization”.

Bloomberg New Energy Finance reports that CO2 emissions from the power sector should drop to their lowest levels since 1994.

The factors most connect to this decline include:

  • The instillation of more renewables than ever before—with around 18 new GW coming online.
  • A record year for coal retirements—forecasting 23GW to come offline.
  • The burning of more natural gas in 2015 than ever before.

(more…)

First U.S. Offshore Wind Farm

Offshore wind farms in the United States have been met with a lot of resistance. While countries such as Europe have roughly 2,488 off shore wind turbines up and running, America has none.

Cape Wind – an initiative in offshore wind farms out of Massachusetts – has been attempting to establish their 130-turbine project for quite some time now, but have not been able to cut through the red tape.

While the outlook for the Cape Wind project appears to be grim, another initiative is rising in the ranks and is determined to get the United States on the offshore wind farm scoreboard.

(more…)

45.7% Efficiency for Concentrator Solar Cell

This achievement represents one of the highest photovoltaic research cell efficiencies achieved across all types of solar cells.Credit: NREL (Click to enlarge)

This achievement represents one of the highest photovoltaic research cell efficiencies achieved across all types of solar cells.
Credit: NREL (Click to enlarge)

Improvements in solar power are being developed all around the world, with scientist and researchers continuously attempting to apply electrochemistry and other sciences to solar cells in order to improve efficiency. Recently, the National Renewable Energy Laboratory (NREL) has reported one of the highest photovoltaic cell efficiencies achieved across all types of solar cells.

Researchers at the NREL have demonstrated a 45.7 percent conversion efficiency for a four-junction solar cell at 234 suns concentration.

(more…)

Old Blu-Ray Discs to Make Better Solar Panels

An interdisciplinary team from the McCormick School of Engineering and Applied Science discovered that using the data storage pattern from a Blu-ray disc improves solar cell performance and that video content doesn’t matter.Credit: Northwestern University

An interdisciplinary team from the McCormick School of Engineering and Applied Science discovered that using the data storage pattern from a Blu-ray disc improves solar cell performance and that video content doesn’t matter.
Credit: Northwestern University

Since its launch, the Blu-ray disc has been promoted as the bigger, better, and more impressive way to view movies at home. But researchers from Northwestern University are now telling us that Blu-ray discs are good for more than just giving us a better home viewing experience.

An interdisciplinary team from the McCormick School of Engineering and Applied Science at Northwestern University has published research stating that Blu-ray discs can be used to improve the performance of solar cells.

(more…)

Engineers at UC San Diego have developed a nanoparticle-based material for concentrating solar power plants that converts 90% of captured sunlight to heat. With particle sizes ranging from 10 nanometers to 10 micrometers, the multiscale structure traps and absorbs light more efficiently and at temperatures greater than 700 degrees Celsius.Credit: Renkun Chen, Mechanical Engineering Professor, UC San Diego Jacobs School of Engineering

Engineers at UC San Diego have developed a nanoparticle-based material for concentrating solar power plants that converts 90% of captured sunlight to heat.
Credit: Renkun Chen, Mechanical Engineering Professor, UC San Diego Jacobs School of Engineering

An engineering team from the University of California, San Diego, has developed a new nanoparticle-based material for concentrating solar power. The new research, which has been funded by the U.S. Department of Energy’s SunShot program and published in the journal Nano Energy, aims to convert 90 percent of captured light into heat and make solar costs more competitive.

The new material will be able to withstand temperatures greater than 700° Celsius and can survive many years outdoors, despite exposure to humidity.

“We wanted to create a material that absorbs sunlight that doesn’t let any of it escape. We want the black hole of sunlight,” said Sungho Jin, a professor in the department of Mechanical and Aerospace Engineering at UC San Diego Jacobs School of Engineering.

This from the University of California, San Diego:

The novel material features a “multiscale” surface created by using particles of many sizes ranging from 10 nanometers to 10 micrometers. The multiscale structures can trap and absorb light which contributes to the material’s high efficiency when operated at higher temperatures.

Read the full article here.

Head over to our Digital Library and read more research by Sungho Jin, one of the developers of the Silicon boride-coated nanoshell material.

Norwegian entrepreneur, Jostein Eikeland, is finally unveiling the development his has been working on in secret for the past decade in hopes to jolt the world of energy storage.

Eikeland and his company Alevo plan to reveal a battery that will last longer and cost far less than the current rival technologies. To do this, they have developed a technology that is to store excess electricity generated by power plants.

This from Reuters:

The company has created what it calls GridBanks, which are shipping containers full of thousands of battery cells. Each container can deliver 2 megawatts of power, enough to power up to 1,300 homes for an hour. The batteries use lithium iron phosphate and graphite as active materials and an inorganic electrolyte – what Eikeland called the company’s “secret sauce” – that extends longevity and reduces the risk of burning. They can be charged and discharged over 40,000 times, the company said.

(more…)

“Any sufficiently advanced technology is indistinguishable from magic.”
-Arthur C. Clarke

Doctoral student Joseph Choi is pictured with a a multidirectional `perfect paraxial’ cloak using 4 lenses.Credit: University of Rochester Newscenter

Doctoral student Joseph Choi is pictured with a a multidirectional `perfect paraxial’ cloak using 4 lenses.
Credit: University of Rochester Newscenter

Scientists at the University of Rochester have developed a real-world invisibility cloak. This Harry Potter-esque cloak has the ability to hide objects from view, and is surprisingly inexpensive due to the readily available materials in its novel configuration.

“There’ve been many high tech approaches to cloaking and the basic idea behind these is to take light and have it pass around something as if it isn’t there, often using high-tech or exotic materials,” said John Howell, a professor of physics at the University of Rochester.

The Rochester Cloak is different from its predecessors, because unlike invisibility cloaks of the past, this cloak maintains an object’s invisibility even when the viewer changes his or her angle and creates a different viewpoint.

“This is the first device that we know of that can do three-dimensional, continuously multidirectional cloaking, which works for transmitting rays in the visible spectrum,” said Joseph Choi, a PhD student at Rochester’s Institute of Optics who is working with physics professor John Howell at the university.

(more…)

Member Spotlight – Donald R. Sadoway

Donald R. Sadoway

Sadoway’s research seeks to establish the scientific underpinnings for technologies that make efficient use of energy and natural resources in an environmentally sound matter.
Credit: MIT

Donald R. Sadoway – a prominent member of The Electrochemical Society and electrochemist at the Massachusetts Institute of Technology in Cambridge – has led a team of researchers at MIT to improve a proposed liquid battery system that could help make sources of renewable energy more viable and prove to be a competitor for conventional power plants.

This from MIT News:

Sadoway, the John F. Elliott Professor of Materials Chemistry, says the new formula allows the battery to work at a temperature more than 200 degrees Celsius lower than the previous formulation. In addition to the lower operating temperature, which should simplify the battery’s design and extend its working life, the new formulation will be less expensive to make, he says.

(more…)

Pressure Retarded Osmosis (PRO)

Pressure retarded osmosis (PRO) is a method of producing renewable energy from two streams of a different salinity.
Credit: Jose-Luis Olivares/MIT

When the River Meets the Sea” may very well be a John Denver song circa 1979, but it is also an intersection with the potential to generate a significant amount of power. According to a team of mechanical engineers at MIT, when river water collides with sea water, there exists the potential to harness a significant amount of renewable energy.

This from Phys.org:

The researchers evaluated an emerging method of power generation called pressure retarded osmosis (PRO), in which two streams of different salinity are mixed to produce energy. In principle, a PRO system would take in river water and seawater on either side of a semi-permeable membrane. Through osmosis, water from the less-salty stream would cross the membrane to a pre-pressurized saltier side, creating a flow that can be sent through a turbine to recover power.

Read the full article here.

According to calculations by Leonardo Banchik, a graduate student in MIT’s Department of Mechanical Engineering, a PRO system could potentially power a coastal wastewater-treatment plant by taking in seawater and combining it with treated wastewater to produce renewable energy.

Although more research needs to be done to see in what applications the PRO system is economically viable, Banchik sees the huge potential of this method.

“Say we’re in a place that could really use desalinated water, like California, which is going through a terrible drought,” Banchik says. “They’re building a desalination plant that would sit right at the sea, which would take in seawater and give Californians water to drink. It would also produce a saltier brine, which you could mix with wastewater to produce power.”

Learn more about new devlopments in osmosis via ECS’s Digital Library.