The new hybrid sol-gel material provides an electrical energy storage capacity rivaling some batteries.Image: John Toon/Georgia Tech

The new hybrid sol-gel material provides an electrical energy storage capacity rivaling some batteries.
Image: John Toon/Georgia Tech

The future of electric vehicle and defibrillator technologies depend largely on new, innovative energy storage research and improving device power densities. With the high demand for more powerful, efficient energy devices, the researchers from Georgia Tech believe they may have developed what could be the answer to powering large-scale devices.

The team has developed a new capacitor dielectric material. This capacitor—developed from a hybrid silica sol-gel material and self-assembled monolayers of common fatty acid—has the potential to surpass some of today’s conventional batteries in the field of energy and power density.

If the researchers can scale up their current laboratory sample, the new capacitors will be able to provide large amounts of current quickly to large-scale applications.

This from Georgia Tech:

The new material is composed of a silica sol-gel thin film containing polar groups linked to the silicon atoms and a nanoscale self-assembled monolayer of an octylphosphonic acid, which provides insulating properties. The bilayer structure blocks the injection of electrons into the sol-gel material, providing low leakage current, high breakdown strength and high energy extraction efficiency.

(more…)

Prof. Sundaram has received degrees from the University of Kerala, Indian Institute of Science, and the Indian Institute of Technology.

Prof. Sundaram has received degrees from the University of Kerala, Indian Institute of Science, and the Indian Institute of Technology.

Kalpathy B. Sundaram of the University of Central Florida will be awarded the 2015 Dielectric Science and Technology Division Thomas D. Callinan Award at the ECS 227th Meeting in Chicago this May.

This prestigious award was established by ECS in 1967 to encourage excellence in dielectrics and insulation investigations, as well as recognize outstanding research contributions in the field.

Prof. Sundaram will receive this award for showing excellence in his field through his research in thin film technology for low dielectric constant and high-k dielectric materials. Both academic and industrial researchers and engineers cite Prof. Sundaram’s contributions in solving fundamental problems with high-k materials.

(more…)