The Current State of Battery Research

By: Marca Doeff, ECS Battery Division Chair

Marca Doeff, a staff scientist in the Energy Storage and Distributed Resources Division at Lawrence Berkeley National Laboratory and chair of the ECS Battery Division, discusses the future of batteries. Doeff covers advancements and developments, notable contributors and leaders, corporate sponsors and supporters, upcoming meetings and awards, all within the battery field.

What are a few current areas of battery research the division is focusing on?
Anything having to do with lithium-ion batteries, since they are turning out to be the real workhorses of the battery world. While the chemistry is fairly mature at this point, there is still a lot of work going on in silicon anodes, trying to find better cathode materials, and improving electrolytes.

There are also intense efforts going into recycling, advanced manufacturing, and understanding and mitigating safety issues. The so-called “Beyond Li-ion” systems have been the focus of a lot of research in recent years. The ideas for many of these have been around for a while-like lithium metal batteries with sulfur cathodes, or sodium ion (one of my favorites), solid state batteries, or even multivalent chemistries, but the revolution in battery science over the past 25 years or so means that it is worthwhile taking a fresh look at these systems. (more…)

New energy system prototype from Chalmers University that can store the sun’s energy for up to 18 years. Image by: Chalmers University of Technology

According to Science Alert, scientists have recently figured out a way to store solar power for up to 18 years.

It’s made possible with a specialised fluid, called a solar thermal fuel, that’s catching the attention of numerous investors, according to the research team at the Chalmers University of Technology working on the project. (more…)

Have you ever picked up your cell, looked at the battery life, and go, “But I just charged this thing. What gives?” It’s not just you. According to The Washington Post, the smartphones battery life is getting worse. And, chances are, you’re new and upgraded 2018 smartphone’s battery life is actually worse than older models.

Phone makers have claimed to have tackled this battle by including more-efficient processors, low-power modes, and artificial intelligence to manage app drain, but it’s no secret to the battery industry that the lithium-ion batteries in smartphones have hit a plateau.

So, what gives? According to Nadim Maluf, CEO of a firm that optimizes batteries called Qnovos, batteries improve at a very slow pace, about 5 percent per year. (more…)

Q&A with George E. Blomgren

George BlomgrenGeorge E. Blomgren is the author of “The Development and Future of Lithium Ion Batteries,” the most-downloaded Journal of The Electrochemical Society paper since April 2017. To put this in perspective, Blomgren’s article has had 26,817 downloads this year. That is over 4.4 times the average amount received by the next nine most-downloaded JES papers for this year. Since its publication in December 2016, Blomgren’s paper has been downloaded a total of 53,575 times.

We decided to revisit the man with the incredible stats, and ask, how did you do it?

(more…)

Improving Lead Batteries

Photo Credit: Essential Energy Everyday

Lead batteries have been around 1859. They’ve changed our lives, giving us car batteries, standby batteries in case power outages, electric vehicles, and more. Still, despite all this progress, no one really understands the inner workings of lead batteries. According to Essential Energy Everyday, for the last century, lead battery manufacturers have invested much of their research in creating function and production, without fully understanding the underlying chemistry. However, that’s soon said to change as lead batteries are headed for a “high-tech makeover.”

A team of researchers from the U.S. Department of Energy’s Argonne National Laboratory, Advanced Lead Acid Battery Consortium, and Electric Applications have joined forces to realize the potential of a venerable battery technology.

Venkat Srinivasan, director of the Argonne Collaborative Center for Energy Storage Science and ECS member, says this is a beautiful example of how synergy between industry and science can drive innovation. (more…)

XPRIZE hands the Skysource/Skywater Alliance their $1.75M prize.
Photo Credit: XPRIZE

It’s not unheard of for fundamental human necessities—shelter, food, and water—to not be met in certain parts of the world. Whether a result of poverty, political turmoil, geography, limited resources, or all of the above, it remains a struggle for many. However, a team of sustainability experts in California may be closer to solving one of those problems.

According to CNN, the team known as the Skysource/Skywater Alliance, have developed machines that can make gallons of fresh drinking water right out of thin air. These machines, dubbed Skywater, can make up to 300 gallons of fresh drinking water a day from thin air—to add some perspective to the magnitude of their invention. (more…)

MRS Webinar with Shirley MengThe Electrochemical Society and Materials Research Society are co-presenting a webinar on Frontiers in Solid State Batteries on Wednesday, October 24, 2018, from 1200-1330h ET.

ECS fellow, Shirley Meng, will be a presenter during the webinar. Jagjit Nanda of Oak Ridge National Laboratory will serve as the host for the webinar.

Webinar description

The advantages of solid state batteries were not fully recognized until the 1960s, with the discovery of beta-alumina, which led to the development of the commercially relevant high-temperature Na-S battery in the 1960s and the ZEBRA battery in the 1980s. The October issue of MRS Bulletin focuses on recent developments in solid ion-conductors and the various surface and interfacial challenges needed to be overcome for enabling solid-state batteries. (more…)

12 Years to Limit Climate Change

Twelve. That’s how many years scientists predict are left to further prevent the consequences of climate change, before each half degree leads to worsening conditions, including risks of drought, floods, and extreme heat, according to UN Intergovernmental Panel on Climate Change.

Devastating hurricanes in the U.S., record droughts in Cape Town, and forest fires in the Arctic are already revealing the current effects of global warming, the IPCC report says,  warning that every fraction of additional warming could worsen the impact.

(more…)

Wind turbines, the ideal alternative to burning fossil fuels: plentiful, renewable, clean energy. Or is it?

A recent study is forcing us to take a closer look at this green energy alternative, according to ScienceDaily. Extracting energy from large-scale wind farms has the potential to warm the Continental United States by 0.24 degrees Celsius, due to the wind turbine’s redistribution of heat in the atmosphere.

At the end of the day really, all large-scale energy systems have environmental impacts. But, the ability to compare the impacts of renewable energy sources is an important step in planning a future. Extracting energy from the wind causes climatic impacts that are small compared to current projections of 21st century warming, but large compared to the effect of reducing U.S. electricity emissions to zero with solar. (more…)

Hydrogen-Powered Trains Hit Tracks

 

Photo Credit: René Frampe, Alstrom

Last week, we told you about California’s commitment to go 100 percent carbon-free by 2045. Well, it turns out the Golden State is in good company. Germany has welcomed two of their first, state-of-the-art hydrogen-powered trains, according to Ars Technica.

The trains are built to run a total of 62-miles throughout the windswept hills of Northern Germany before refueling. These cutting-edge trains, known as  Coradia iLint trains, are the first of its kind — with 14 more hydrogen-powered trains expected to be delivered before 2021 by the French train-building company Alstom. A big step towards Germany’s goal to lower transportation-related emission. (more…)

  • Page 1 of 52