Ingestible Sensor to Improved Diagnostics

Researchers from MIT have unveiled new opportunities in diagnostics through the development of an ingestible sensor with the ability to continuously monitor vital signs. The device, which measures heart rate and breathing from within the gastrointestinal track, has the potential to offer beneficial assessment of trauma patients, soldiers in battle, and those with chronic illness.


“Through characterization of the acoustic wave, recorded from different parts of the GI tract, we found that we could measure both heart rate and respiratory rate with good accuracy,” says Giovanni Traverso, one of the lead authors of the study.

The development of pulse sensors such as this are beginning to outpace the traditional stethoscope. However, the pulse sensors that currently exist wrest on the patient’s skin, which is problematic for those with skin sensitivity such as burn victims.

A team of researchers developed what is essentially “an extremely tiny stethoscope that you can swallow,” according Albert Swiston, senior author of the study. “Using the same sensor, we can collect both your heart sounds and your lung sounds. That’s one of the advantages of our approach—we can use one sensor to get two pieces of information.”

This from MIT:

To translate these acoustic data into heart and breathing rates, the researchers had to devise signal processing systems that distinguish the sounds produced by the heart and lungs from each other, as well as from background noise produced by the digestive tract and other parts of the body. The entire sensor is about the size of a multivitamin pill and consists of a tiny microphone packaged in a silicone capsule, along with electronics that process the sound and wirelessly send radio signals to an external receiver, with a range of about 3 meters.

Read the full article.

With the potential to offer much more patient information to doctors through continuous vitals, researchers plan of moving forward creating a wireless version of the devices using only FDA approved components.

DISCLAIMER

All content provided in the ECS blog is for informational purposes only. The opinions and interests expressed here do not necessarily represent ECS's positions or views. ECS makes no representation or warranties about this blog or the accuracy or reliability of the blog. In addition, a link to an outside blog or website does not mean that ECS endorses that blog or website or has responsibility for its content or use.

Post Comments

Your email address will not be published.