Focus IssuesSubmit your manuscripts to the ECS Journal of Solid State Science and Technology (JSS) Focus Issues on Semiconductor-Based Sensors for Application to Vapors, Chemicals, Biological Species, and Medical Diagnosis by February 14, 2018.

This JSS focus issue aims to cover various active or passive semiconductor devices for gas, chemical, bio and medical detection, with the focus on silicon, GaN, dichalcogenides/oxides, graphene, and other semiconductor materials for electronic or photonic devices. The scope of contributed articles includes materials preparation, growth, processing, devices, chemistry, physics, theory, and applications for the semiconductor sensors. Different methodologies, principles, designs, models, fabrication techniques, and characterization are all included. Integrated systems combine semiconductor sensors, electric circuit, microfluidic channels, display, and control unit for real applications such as disease diagnostic or environmental monitoring are also welcome.

(more…)

ECS to Require ORCID iD

As of January 1, 2018, ECS will require all corresponding authors to have an ORCID iD in order to submit to the Journal of The Electrochemical Society or the ECS Journal of Solid State Science and Technology. ORCID iDs will be published in accepted articles and included in articles’ metadata to improve content discoverability and citation.

Contributing authors who would like their ORCID iDs displayed along with the corresponding author’s iD will need to update their profiles in ECSxPress with their ORCID iDs prior to their paper’s acceptance.

(more…)

ECS Journal Impact Factors Rise 8%

The journal impact factors (JIFs) for 2016 have been released, and ECS is pleased to announce that the JIFs for the Journal of The Electrochemical Society (JES) and the ECS Journal of Solid State Science and Technology (JSS) have both risen by 8%.

The JIFs, published in the Journal of Citation Reports (formerly published by Thomson Reuters, now called Clarivate Analytics), are a long-established metric intended to evaluate the relevancy and importance of journals. A journal’s JIF is equivalent to the average number of times its articles were cited over the course of the prior two years.

From 2015 to 2016, the JIF of JES increased from 3.014 to 3.259, and the JIF of JSS climbed from 1.650 to 1.787. These increases mark a continuing trend of growth for both journals.

(more…)

ECS Journal Article Types

ECS journalsECS believes that the key to sustainability is the ability to adapt. For 115 years, ECS has been committed to publishing high quality, peer-reviewed research at the cutting edge of innovation.

But the demands of the research arena are always changing. As the scientific community develops new needs out in the field, so must ECS—as a leading nonprofit publisher—develop new avenues and more inclusive platforms for publication and dissemination.

To best accommodate the needs of contemporary scientific research, ECS’s journals, the Journal of The Electrochemical Society and the ECS Journal of Solid State Science and Technology, are open to article submission types beyond that of the standard-issue research paper. As of 2017, ECS accepts journal submissions of five different types.

Whether you’re an author, an editor, or a reader of ECS publications, it’s beneficial to be familiar with the five ECS journal article types.

(more…)

JSS CoverDeadline: June 14, 2017

ECS is seeking to fill the position of Technical Editor in the Dielectric Science & Materials Topical Interest Area for the ECS Journal of Solid State Science and Technology (JSS).

The Dielectric Science & Materials (DSM) Topical Interest Area (TIA) includes theoretical and experimental aspects of inorganic and organic dielectric materials, including electrical, physical, optical, and chemical properties. Specific topics include growth processes; reliability; modeling and property measurements; polarizability; bulk and interfacial properties; interphases; reaction kinetics; phase transformations; thermodynamics; electric and ionic transport; polymers; high k, low k, and embedded dielectrics; porous dielectrics; thin and ultra-thin films.

JSS has been in existence since 2012. It was created as an outgrowth of the Journal of The Electrochemical Society (JES) to deal more exclusively in solid state topics. JES and JSS provide unparalleled opportunities to disseminate basic research and technology results in electrochemical and solid state science and technology. JSS publishes a minimum of 14 regular and focus issues each year. All ECS journals offer author choice open access.

ECS maintains 13 TIAs, and there is one Technical Editor (TE) for each TIA, supported by Associate Editors and an editorial advisory board. TEs for the ECS journals ensure the publication of original, significant, well-documented, rigorously peer-reviewed articles that meet the objectives of the relevant journal, and are within the scope of the Society’s TIAs.

(more…)

PhosphorsSubmit your manuscripts for the ECS Journal of Solid State Science and Technology (JSS) Focus Issue on Visible and Infrared Phosphor Research and Applications by July 29, 2017.

Rapid changes are taking place in the area of luminescent materials research from basic understanding to novel applications. This is due to the recent progresses in the area of phosphors for LED applications and the need for novel luminescent materials for applications in medical research as biosensors, solar cells, infrared sensors, and display technologies. These developments have led to new questions and new techniques related to basic research in the field of luminescence.

The main goal of this focus issue of the JSS is to provide a comprehensive picture of the current trends in research of phosphor emitting in the visible and IR regions.

Review and contributed papers are welcome in the following topics:

(more…)

Focus IssuesThe ECS Journal of Solid State Science and Technology is now featuring a focus issue on Thermoelectric Materials & Devices: Phonon Engineering, Advanced Materials and Thermal Transport. The issue reflects the symposia from the 228th ECS Meeting on Thermoelectric and Thermal Interface Materials in Phoenix, AZ.

In the issue’s preface, the authors tell us that advances in this field, “. . . can inspire developments in thermoelectrics that may underpin the next major advance in energy harvesting and cooling and ultimately improve the quality of our devices, and help drive energy efficiency and a greener society.”

The focus issue discusses advances, challenges, and applications in thermoelectrics and its various sub-fields such as phonon transport physics, materials science, electronics, condensed matter physics, engineering, the chemistry of materials, and processing technology.

The Society would like to thank the authors, reviewers, and editors who contributed to this focus issue. Special thank you to Colm O’Dwyer from University College Cork, Renkun Chen from the University of California, San Diego, Jr-Hau He from King Abdulla University of Science and Technology, Jaeho Lee from the University of California Irvine, and Kafil M. Razeeb from University College Cork.

Read the focus issue in the ECS Digital Library.

Editors' ChoiceThree new Editors’ Choice articles have been published recently in the Journal of The Electrochemical Society (JES) and ECS Journal of Solid State Science and Technology (JSS).

An Editors’ Choice article is a special designation applied by the Journals’ Editorial Board to any article type. Editors’ Choice articles are transformative and represent a substantial advance or discovery, either experimental or theoretical. The work must show a new direction, a new concept, a new way of doing something, a new interpretation, or a new field, and not merely preliminary data.

(more…)

Enzyme-based sensors detect lactate levels in sweat

Sweat Sensor

Image: Sergio Omar Garcia

It may be clammy and inconvenient, but human sweat has at least one positive characteristic – it can give insight to what’s happening inside your body. A new study published in the ECS Journal of Solid State Science and Technology aims to take advantage of sweat’s trove of medical information through the development of a sustainable, wearable sensor to detect lactate levels in your perspiration.

“When the human body undergoes strenuous exercise, there’s a point at which aerobic muscle function becomes anaerobic muscle function,” says Jenny Ulyanova, CFD Research Corporation (CFDRC) researcher and co-author of the paper. “At that point, lactate is produce at a faster rate than it is being consumed. When that happens, knowing what those levels are can be an indicator of potentially problematic conditions like muscle fatigue, stress, and dehydration.”

Utilizing green technology

Using sweat to track changes in the body is not a new concept. While there have been many developments in recent years to sense changes in the concentrations of the components of sweat, no purely biological green technology has been used for these devices. The team of CFDRC researchers, in collaboration with the University of New Mexico, developed an enzyme-based sensor powered by a biofuel cell – providing a safe, renewable power source.

Biofuel cells have become a promising technology in the field of energy storage, but still face many issues related to short active lifetimes, low power densities, and low efficiency levels. However, they have several attractive points, including their ability to use renewable fuels like glucose and implement affordable, renewable catalysts.

(more…)

JSS Editors’ Choice article discusses AlGaN/GaN HEMTs

When it comes to putting technology in space, size and mass are prime considerations. High-power gallium nitride-based high electron mobility transistors (HEMTs) are appealing in this regard because they have the potential to replace bulkier, less efficient transistors, and are also more tolerant of the harsh radiation environment of space. Compared to similar aluminum gallium arsenide/gallium arsenide HEMTs, the gallium nitride-based HEMTs are ten times more tolerant of radiation-induced displacement damage.

Until recently, scientists could only guess why this phenomena occurred: Was the gallium nitride material system itself so inherently disordered that adding more defects had scant effect? Or did the strong binding of gallium and nitrogen atoms to their lattice sites render the atoms more difficult to displace?

The answer, according to scientists at the Naval Research Laboratory, is none of the above.

Examining radiation response

In a recent open access article published in the ECS Journal of Solid State Science and Technology entitled, “On the Radiation Tolerance of AlGaN/GaN HEMTs,” the team of researchers from NRL state that by studying the effect of proton irradiation on gallium nitride-based HEMTs with a wide range of initial threading dislocation defectiveness, they found that the pre-irradiation material quality had no effect on radiation response.

Additionally, the team discovered that the order-of-magnitude difference in radiation tolerance between gallium arsenide- and gallium nitride-based HEMTs is much too large to be explained by differences in binding energy. Instead, they noticed that radiation-induced disorder causes the carrier mobility to decrease and the scattering rate to increase as expected, but the carrier concentration remains significantly less affected than it should be.

(more…)

  • Page 1 of 2
    • 1
    • 2