A team of researchers at the University of Manchester – where graphene was first discovered and won the Nobel Prize – created a graphene-oxide membrane for desalination. The newly developed sieve can turn seawater into drinking water, demonstrating graphene’s ability to filter common salts from water, leading to affordable desalination technology.
Prior to this research, graphene-oxide molecules have garnered significant attention from the scientific community, demonstrating their potential to filter our small nanoparticles, organic molecules, and even large salts. However, researchers have not been able to use a graphene-oxide membrane in desalination technologies, which require very small sieves, until this development.
This from the University of Manchester:
Previous research at The University of Manchester found that if immersed in water, graphene-oxide membranes become slightly swollen and smaller salts flow through the membrane along with water, but larger ions or molecules are blocked.
The Manchester-based group have now further developed these graphene membranes and found a strategy to avoid the swelling of the membrane when exposed to water. The pore size in the membrane can be precisely controlled which can sieve common salts out of salty water and make it safe to drink.