Nanostructures

Nanostructures on the surface of the fabric.
Image: Queensland University of Technology

Oil spills have had an extensive history of disrupting the environment, killing ecosystems, and displacing families. Impacts of massive oil spills are still felt in many parts of the world, including the undersea spill at the BP oil rig in the Gulf of Mexico that dumped an approximate 39 million gallons of oil into the gulf.

But what if these devastating oil spills could be easily cleaned up with a piece of fabric rooted in electrochemistry?

That may be a reality soon thanks to researchers at Queensland University of Technology (QUT). According to a release, the QUT researchers have developed a multipurpose fabric covered with semi-conducting nanostructures that can both mop up oil and degrade organic matter when exposed to light.

(READ: “Superhydrophobic Fabrics for Oil/Water Separation Based on the Metal-Organic Charge-Transfer Complex CuTCNAQ“)

The fabric, which repels water and attracts oil, has already has promising preliminary results. In the early stages of research, the scientists have already been able to mop up crude oil from the surface of both fresh and salt water.

(more…)

Artificial limbs have experience tremendous evolution in their long history. Throughout history, we’ve gone from the peg leg of the Dark Ages to technologically advanced modern day prosthesis that mimic the function of a natural limb. However, most prosthesis still lack a sense of touch.

Zhenan Bao, past ECS member and chemical engineer at Stanford University, is at the forefront of the research looking to change that.

(MORE: Read Bao’s past meeting abstracts in the ECS Digital Library for free.)

Recently on NPR’s All Things Considered, Bao described her work in developing a plastic artificial skin that can essentially do all the things organic skin can do, including sensing and self-healing.


The self-healing plastic Bao uses mimics the electrical properties of silicon and contains a nano-scale pressure sensor. The sensor is then connected to electrical circuits that connect to the brain, transmitting the pressure to the brain to analyze as feeling.

Additionally, the skin is set to be powered by polymers that can turn light into electricity.

While there is still much work to be done, Bao and her colleagues believe that this product could help people who have lost their limbs regain their sense of touch.

A research team, including ECS members Stephen Doorn and Erik H Hároz, has created flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes thanks to a simple filtration process. In a discovery that was previously though impossible, the researchers found that in the right solution and under the right conditions, the tubes can assemble themselves by the millions into long rows.

(ICYMI: Get the freshman 101 on carbon nanotubes from nanocarbons expert Bruce Weisman.)

This development could help bring flexible electronics to actuality, especially with the special electronic properties of the nanotubes.

“Once we have centimeter-sized crystals consisting of single-chirality nanotubes, that’s it,” said Junichiro Kono, Rice University physicist leading the study. “That’s the holy grail for this field. For the last 20 years, people have been looking for this.”

Bruce Weisman, chemistry and materials science professor at Rice University, is internationally recognized for his contributions to the spectroscopy and photophysics of carbon nanostructures. He is a pioneer in the field of spectroscopy, leading the discovery and interpretation of near-infrared fluorescence for semiconducting carbon nanotubes. Aside from his work at Rice University, Weisman is also the founder and president of Applied NanoFluorescence.

Weisman is currently the Division Chair of the ECS Nanocarbons Division, which will be celebrating 25 years of nanocarbons symposia at the upcoming 229th ECS Meeting in San Diego, CA, May 2016. Since starting in 1991, the symposia has totaled 5,853 abstracts at ECS biannual meetings, with Nobel Laureate Richard Smalley delivering the inaugural talk.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

Glucose monitoring has had a long history with electrochemical science and technology. While ECS Honorary Member Adam Heller’s continuous glucose monitoring system for diabetes management may be the first innovation that comes to mind, there is a new electrochemical bio-sensing tool on the horizon.

(WATCH: ECS Masters – Adam Heller)

Researchers have combined graphene with a tiny amount of gold to enhance the wonder material’s properties and develop a flexible skin patch to monitor blood glucose and automatically administer drugs as needed.

This from Extreme Tech:

[As] cool as a non-invasive blood-glucose monitor is, it’s nearly as revolutionary as what comes next: treatment. The patch is studded with “microneedles” that automatically cap themselves with a plug of tridecanoic acid. When high blood-glucose levels are detected, the patch heats a small heater on the needles which deforms the plug and allows the release of metformin, a common drug for treatment of type 2 diabetes. Cooling naturally restores the plug and stops drug release.

Read the full article.

This development is a huge stepping stone in the transformation of graphene as a laboratory curiosity to a real product. While it has taken a while due to the questions of the new material’s intrinsic properties, researchers believe that graphene-based products could soon be hitting the market.

Do you want to be forever externalized? Then look no further than this new quartz coin that can store the history of humankind for 14 billion years.

As if the previous breakthrough of quartz glass storage that yielded a self-life of 300 million years wasn’t enough, the new research take nanotechnology to a whole new level.

To understand exactly how long 14 million years is, check out these stats via Futurism:

  • Age of Earth: 4.534 billion years
  • Age of the Universe: 13.82 billion years

The research comes out of Southampton University, where the group has essentially developed a way to fit on just one sliver of nanostructured quartz 350TB of information.

This form Futurism:

The technique uses femtosecond laser pulses to write data in the 3D structure of quartz at the nanoscale. The pulses create three layers of nanostructred dots, each just microns above the other. The changes in the structure can be read by interrogating the sample with another pulse of light and recording the orientation of the waves after they’ve passed through.

Read the full article.

At the very least, this development in 5D storage will change the way we archive historical information.

Graphene Simplifies Ice Removal

Graphene ice removal

Through a nanoribbon-infused epoxy, researchers were able to remove ice through Joule heating.
Image: Rice University

Graphene, better known as the wonder material, has seemingly limitless possibilities. From fuel cells to night-vision to hearing, there aren’t many areas that graphene hasn’t touched. Now, researchers from Rice University and transforming graphene for uses in air travel safety.

James Tour, past ECS lecturer and molecular electronics pioneer, has led a team in developing a thin coating of graphene nanoribbons to act as a real-time de-icer for aircrafts, wind turbines, and other surfaces exposed to winter weather.

(MORE: Read “High-Density Storage, 100 Times Less Energy“)

Through electrothermal heat, the graphene nanoribbons melted centimeter-thick ice on a static helicopter rotor blade in a -4° Fahrenheit environment.

This from Rice University:

The nanoribbons produced commercially by unzipping nanotubes, a process also invented at Rice, are highly conductive. Rather than trying to produce large sheets of expensive graphene, the lab determined years ago that nanoribbons in composites would interconnect and conduct electricity across the material with much lower loadings than traditionally needed.

Read the full article.

“Applying this composite to wings could save time and money at airports where the glycol-based chemicals now used to de-ice aircraft are also an environmental concern,” Tour said.

The coating may also protect aircrafts from lightning strikes and provide and extra layer of electromagnetic shielding.

World’s Most Expensive Material

The world’s most expensive material is being created in a lab and it’s going for $33,000 per 200 micrograms. To put that in perspective, that’s an astonishing $4.2 billion an ounce.

The novel material consists of molecular units called endohedral fullerenes, which are essentially a cage of carbon atoms containing nitrogen atoms.

Developers and scientists behind the material are focused on implementing the endohedral fullerenes into the development of a small, portable atomic clock. The atomic clock is the most accurate time-keeping system in the world and could assist in the accuracy of everything from a GPS to an automatic car.

“Imagine a minaturised atomic clock that you could carry around in your smartphone,” says Kriakos Porfyrakis, scientist working on the development of the material. “This is the next revolution for mobile.”

Aside from impacting cellphone technology, Porfyrakis expects the material to change transportation in a big way.

ICYMI: Learn about the early history of the Buckyball.

“There will be lots of applications for this technology,” says Lucius Cary, director of Oxford Technology SEIS fund. “The most obvious is in controlling autonomous vehicles. If two cars are coming towards each other on a country lane, knowing where they are to within 2m is not enough but to 1mm it is enough.”

Rusnanoprize Awarded to ECS Members

id41860Two ECS members were recently awarded the 2015 RUSNANOPRIZE Nanotechnology International Prize for their work in developing nanostructured carbon materials, which have facilitated the commercialization and wide-use of supercapacitors in energy storage, automotive, and many other industries. The organization honored Yury Gogotsi and Patrice Simon for their exemplary research in this field.

The RUSNANOPRIZE Nanotechnology International Prize, established in 2009, is presented annually to those working on nanotechnology projects that have substantial economic or social potential. The prize is aimed to promote successful commercialization of novel technology and strengthening collaboration in the field of nanotechnology.

Yury Gogotsi is a professor at Drexel University and director of the Anthony J. Drexel Nanotechnology Institute. Among his most notable accomplishments, Gogotsi was a member of a team that discovered a novel family of two-dimensional carbides and nitrides, which have helped open the door for exceptional energy storage devices. Additionally, Gogotsi’s hand in discovering and describing new forms of carbon and the development of a “green” supercapacitor built of environmentally friendly materials has advanced the field of energy technology.

Gogotsi is a Fellow of ECS and is currently the advisor of the Drexel ECS Student Chapter.

Patrice Simon is a professor at Paul Sabatier University. As a materials scientist and electrochemist, Simon has special interest in designing the next generation of batteries and supercapacitors. As the leader of the French Network on Electrochemical Energy Storage, Simon is making strides in developing next-gen technology through combining 17 labs and 15 companies in an effort to apply novel principals to issues in energy storage and technology. As an internationally recognized leader in the field of nanotechnology for energy storage, Simon’s work focuses on benefiting the entire energy storage industry.

Simon has been a member of ECS for 15 years.

ICYMI: Find other ECS researchers are doing in the world of nanocarbons.

Ingestible Sensor to Improved Diagnostics

Researchers from MIT have unveiled new opportunities in diagnostics through the development of an ingestible sensor with the ability to continuously monitor vital signs. The device, which measures heart rate and breathing from within the gastrointestinal track, has the potential to offer beneficial assessment of trauma patients, soldiers in battle, and those with chronic illness.


“Through characterization of the acoustic wave, recorded from different parts of the GI tract, we found that we could measure both heart rate and respiratory rate with good accuracy,” says Giovanni Traverso, one of the lead authors of the study.

The development of pulse sensors such as this are beginning to outpace the traditional stethoscope. However, the pulse sensors that currently exist wrest on the patient’s skin, which is problematic for those with skin sensitivity such as burn victims.

(more…)

  • Page 2 of 3