How Your Car Could Be Powered by the Sun

By concentrating sunlight into reactors, H20 and CO2 can be split to form liquid fuels.Image: The Conversation/David Hahn

By concentrating sunlight into reactors, H2O and CO2 can be split to form liquid fuels.
Image: The Conversation/David Hahn

The sun produces an astronomical amount of energy each day, but scientists and engineers are still trying to better understand how to convert that energy into an efficient, usable form. Recently, work in photovoltaics deals with utilizing different materials, new arrangements of cell components, and interdisciplinary work to improve efficiently levels. However, a new and exciting area of photovoltaics is now rising in the ranks: turning sunlight into liquid fuels.

With this new development on the rise, the possibility of one day filling our cars with solar-generated fuel is on the horizon.

Researchers are giving more attention to the production of solar fuels because energy conversion and storage and simultaneously covered under one technique. It will give solar energy a wider scope due to more utilization opportunities, whereas conventional photovoltaic energy is only being used for one-third of the day when sunlight is at its peak.

Currently, the greatest roadblock lies in commercialization of the man-made solar fuels due to the substantial amount of energy it takes to break down stable CO2 and H2O molecules.

However, researchers are also exploring aspects of artificial photosynthesis through electrochemistry to help produce efficient, affordable man-made solar fuels.

Further material from the ECS Digital Library:

Read more about processes and current projects on The Conversation.

PS: Watch Ralph Brodd, a pillar of electrochemical science and technology with over 40 years in the electrochemical energy conversion business, talk about the future of the energy infrastructure and how it has transformed over the years.

The new arrangement of photovoltaic materials includes bundles of polymer donors (green rods) and neatly organized fullerene acceptors (purple, tan).Image: UCLA

The new arrangement of photovoltaic materials includes bundles of polymer donors (green rods) and neatly organized fullerene acceptors (purple, tan).
Image: UCLA

A team of UCLA scientists are delivering good news on the solar energy front with the development of their new energy storage technology that could change the way scientists think about solar cell design.

Taking a little inspiration from the naturally occurring process of photosynthesis, the researchers devised a new arrangement of solar cell ingredients to make a more efficient cell.

“In photosynthesis, plants that are exposed to sunlight use carefully organized nanoscale structures within their cells to rapidly separate charges — pulling electrons away from the positively charged molecule that is left behind, and keeping positive and negative charges separated. That separation is the key to making the process so efficient,” said Sarah Tolbert, senior author of this research and published ECS author.

PS: Check out Tolbert’s recently published open access paper in the Journal of The Electrochemical Society entitled, “The Development of Pseudocapacitive Properties in Nanosized-MoO2.”

The currently dilemma in solar cell design revolves around developing a product that is both efficient and affordable. While conventional silicon works rather well, it is too expensive to be practical on a large scale. More engineers and researchers have been moving to replace silicon with plastic, but that leads to efficiency levels taking a hit.

(more…)

100% Renewable Energy Vision

Can the United States convert to 100 percent clean, renewable energy by 2050? Stanford University’s Mark Z. Jacobson and U.C. Berkeley’s Mark Delucchi certainly think so. In fact, they’ve laid out a very comprehensive plan to do just that.

The two researchers have recently published a study detailing the viability of the U.S. converting to 100 percent green energy. They’re calling for aggressive changes in both infrastructure and energy consumption on a state-by-state level to achieve this goal. The new study shows that this transition from fossil fuels to renewable resources is not only technically possible with already existing technologies, but it’s also economically feasible.

“The main barriers are social, political and getting industries to change. One way to overcome the barriers is to inform people about what is possible,” Jacobson said. “By showing that it’s technologically and economically possible, this study could reduce the barriers to a large scale transformation.”

(more…)

GA

Small-scale device provides easy “plug-and-play” testing of molecules and materials for artificial photosynthesis and fuel cell technologies.
Image: Joint Center for Artificial Photosynthesis

Scientists have developed a small-scale device that can aid in the advancement of artificial photosynthesis and fuel cell technologies.

The new device provides an easy “plug-and-play” microfluidic test-bed to evaluate materials for electrochemical energy conversion systems. Researchers will now be able to test small amounts of molecules and materials before producing a full-scale device to insure new devices will provide high energy density.

Sophia Haussener and Joel Ager, published ECS authors and past members, were two of the researchers that worked on the project for the U.S. Department of Energy. (Check out Haussener’s past research on photoelectrochemical water-splitting and Ager’s work in electron diffraction.)

This from U.S. Department of Energy:

As all functional components in this microfluidic test-bed can be easily exchanged, the performance of various components in the integrated system can be quickly assessed and tailored for optimization. The initial experiments and modeling were performed for water electrolysis; however, the system can be readily adapted to study proposed artificial photosynthesis and fuel cell technologies.

Read the full article here.

The researchers believe that this technology will be easily adaptable to other technologies, such as solar-fuel generators. Development of such devices may significantly accelerate due to the new ability to assess performance at an early stage.

The revolutionary system can harvest energy from living plants for use in isolated villages,Image: Plant-e

The revolutionary system can harvest energy from living plants for use in isolated villages.
Image: Plant-e

A revolutionary system with the potential to affect global energy harvesting has recently been developed by a company called Plant-e. The system generates electricity from water-logged plants such as rice grown in patty fields to collect and distribute energy to all areas, even desolate villages.

“It’s based on the principle that plants produce more energy than they need,” said Marjolein Helder, co-founder of Plant-e. “The advantage of this system over wind or solar is that it also works at night and when there’s no wind.”

The science behind the Plant-e technology was conceptualized at Wageningen University in 2007, with the company’s establishment happening thereafter in 2009.

Simply find a plant growing in water and the Plant-e system can begin to harvest energy—whether that plant be rice growing in paddies or simply something growing in your garden.

“It’s just the beginning and lots of things still need to be greatly improved, but the potential is enormous,” said Jacqueline Cramer, professor of sustainable innovation at Utrecht University and former Dutch environment minister.

(more…)

Shortcut to Solar Cells

black-silicon

The newly developed black silicon has the potential to simplify the manufacturing of solar cells due to the ability of the material to more efficiently collect light.
Image: Barron Group

One of the roadblocks in developing a new, clean energy infrastructure lies in our ability to manufacture solar cells with ease and efficiency. Now, researchers from Rice University may have developed a way to simplify this process.

In Andrew Barron’s Rice University lab, he and postdoctoral student Yen-Tien Lu are developing black silicon by employing electrodes as catalysts.

The typical solar cell is made from silicon. By swapping that regular silicon for black silicon, solar cells gain a highly textured surface of nanoscale spikes that allows for a more efficient collection of light.

This from Rice University:

Barron said the metal layer used as a top electrode is usually applied last in solar cell manufacturing. The new method known as contact-assisted chemical etching applies the set of thin gold lines that serve as the electrode earlier in the process, which also eliminates the need to remove used catalyst particles.

(more…)

The high-performance 3D microbattery is suitable for large-scale on-chip integration.Image: Engineering at Illinois

The high-performance 3D microbattery is suitable for large-scale on-chip integration.
Image: Engineering at Illinois

Engineers from the University of Illinois at Urbana-Champaign’s College of Engineering have developed a high-performance 3D microbattery applicable for large-scale on-chip integration with microelectronic devices.

“This 3D microbattery has exceptional performance and scalability, and we think it will be of importance for many applications,” said Paul Braun, professor of materials science and engineering at Illinois.

“Micro-scale devices typically utilize power supplied off-chip because of difficulties in miniaturizing energy storage technologies. A miniaturized high-energy and high-power on-chip battery would be highly desirable for applications including autonomous microscale actuators, distributed wireless sensors and transmitters, monitors, and portable and implantable medical devices.”

(more…)

We recently sat down with the University of Iowa’s Johna Leddy, an established researcher in electrochemical power sources and a highly respected mentor to the students of the Leddy Lab. Listen as we talk about the energy infrastructure, Dr. Leddy’s career in academia, how to make the world a better place, and more!

Listen below and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed.

(more…)

Engineering a Better Solar Cell

This new development will lead to accelerated improvements in the materials' uniformity, stability, and efficiency.Source: University of Washington

This new development will lead to accelerated improvements in the materials’ uniformity, stability, and efficiency.
Source: University of Washington

In light of the growth in solar energy research, scientists have been directing a lot of attention toward perovskites. The materials’ wide range of use and potential to outpace silicon-based semiconductors in the field of solar cells makes perovskites an interesting area of research with great potential.

Researchers from the University of Washington, in conjunction with the University of Oxford, have discovered a new quality to perovskites that could help engineer a better solar cell.

The researchers have shown in their research that, contrast to popular belief, the perovskites are uniform in composition. The materials actually contain flaws that can be engineered to improve solar devices even further.

“In that short amount of time, the ability of these materials to convert sunlight directly into electricity is approaching that of today’s silicon-based solar cells, rivaling technology that took 50 years to develop,” said Dane deQuilettes, a University of Washington doctoral student. “But we also suspect there is room for improvement.”

(more…)

Engineers developed this one-material battery by sprinkling carbon (red) into each side of a new material (blue) that forms the electrolyte and both electrodes at the ends of the battery.Source: Maryland NanoCenter

Engineers developed this one-material battery by sprinkling carbon (red) into each side of a new material (blue) that forms the electrolyte and both electrodes at the ends of the battery.
Source: Maryland NanoCenter

ECS student member Fudong Han and former member Chunsheng Wang have developed a novel solid state battery comprised of just one material that can both move and store electricity.

This new battery could prove to be revolutionary in the area of solid state batteries due to its incorporation of electrodes and electrolytes into a single material.

“Our battery is 600 microns thick, about the size of a dime, whereas conventional solid state batteries are thin films — forty times thinner. This means that more energy can be stored in our battery,” said Han, the first author of the paper and a graduate student in Wang’s group.

This from the University of Maryland:

The new material consists of a mix of sulfur, germanium, phosphorus and lithium. This compound is used as the ion-moving electrolyte. At each end, the scientists added carbon to this electrolyte to form electrodes that push the ions back and forth through the electrolyte as the battery charges and discharges. Like a little bit more sugar added at each end of a cookie-cream mixture, the carbon merely helps draw the electricity from side to side through the material.

(more…)

ECS
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.