In May 2017, we sat down with Gerald Frankel at the 231st ECS Meeting in New Orleans. Frankel is a technical editor of the Journal of The Electrochemical Society, corrosion expert, and open access advocate. Currently, he is a professor of materials science and engineering at The Ohio State University.

Since joining ECS, Jerry has served as chair of the Society’s Corrosion Division and was named ECS fellow in 2006. His research efforts focus on topics ranging from degradation of materials to atmospheric corrosion. In 2012, he was appointed by President Obama to the Nuclear Waste Technical Review Board.

Listen to the podcast and download this episode and others for free on Apple Podcasts, SoundCloud, Podbean, or our RSS Feed. You can also find us on Stitcher and Acast.

(more…)

Corroded pipelinesCorrosion is a dangerous and extremely costly problem. Because of it, buildings and bridges can collapse, oil pipelines break, and water sources become contaminated. Currently, the global cost estimated to repair corrosive effects comes in around $2.5 trillion per year.

But researchers in the field of corrosion science and technology like Robert Kelly, the 2016 winner of ECS’s Corrosion Division H. H. Uhlig Award, are looking to change the way we deal with the effects of corrosion from reactive to predictive.

“One of the sayings about corrosion is that we can explain everything and predict nothing,” Kelly says. “We’re looking to turn that around.”

Corrosion time machine

Kelly, AT&T Professor of Engineering in the University of Virginia’s Department of Materials Science and Engineering, is working with his team to better understand what’s controlling the localized corrosion process with a newly designed accelerated test that can predict the corrosive effects on certain materials when they’re put into their natural environment.

(more…)

Invisible wood

Image: University of Maryland

Wood has been a key building block for much of history infrastructure. While we may have witnessed wood fade out in lieu of other materials in more recent times, it’s about to make a comeback in an unexpected way.

Past ECS member Liangbing Hu of the University of Maryland, College Park is developing a stronger, transparent wood that can be used in place of less environmentally friendly materials such as plastic.

But this development’s novelty really lies in the transparency factor. So many structures built today rely on the use of glass and steel. By replacing those building materials with the transparent wood, the world of design could be revolutionized while heating costs and fuel consumption rates are simultaneously reduced.

This from CNN:

Hu describes the process of creating clear wood in two steps: First, the lignin — an organic substance found in vascular plants — is chemically removed. This is the same step used in manufacturing pulp for paper. The lignin is responsible for the “yellow-ish” color of wood. The second step is to inject the channels, or veins of the wood by filling it with an epoxy — which can be thought of as strengthening agent, Hu says.

(more…)

Sensors Allow Structures to Communicate

The sensors contain innovative distributive mechanisms, which enable online situation awareness and adaptive learning based on artificial intelligence.Image: GENESI

The sensors contain innovative distributive mechanisms, which enable online situation awareness and adaptive learning based on artificial intelligence.
Image: GENESI

If these walls could talk… actually, they can. A new project that goes by the acronym GENESI (Green sEnsor Networks for Structural monItoring) is working to give infrastructure the ability to tell us how it feels.

GENESI researchers are creating various sensor that fit inside buildings, tunnels, and bridges. This novel generation of green wireless sensor networks’ main aim is to allow structures to communicate their status.

The sensor device itself combines a low power node platform with a multi-source energy harvester, a small factor fuel cell, and an energy efficient radio. Each sensor has the ability to monitor vibrating strain, displacement, temperature, and soil moisture.

(more…)