Jason J. Keleher, professor and chair department of chemistry at Lewis University.

According to the Federal Aviation Administration, nearly 7,000 laser strikes on aircrafts were reported in 2017.

“In cities like Chicago this problem is real as people are shining laser pointers on aircrafts during critical phases of flight, which is a big nuisance to pilots,” said Jason Keleher, a professor and chair of chemistry at Lewis University, who was approached by the aviation department at Lewis University to collaborate on a solution to this growing problem .

“Is it a bunch of kids? Is it accidental? Is somebody just like, ‘I bet you can’t hit that plane with those lasers.’ It’s really hard to identify who’s actually doing it. It’s a very interesting problem,” said Keleher, one he, the project’s principal investigator, was prepared to solve.

Keleher explains that although the lasers don’t cause permanent eye damage to pilots as they maneuver the aircraft, it does cause temporary flash blindness which may make it difficult for pilots to see control systems as they prepare for take-off and landing. He explains it is similar to the way high beams can disorient a driver upon direct exposure.

Just over one year ago, the world’s first solar-powered plane set off on a journey around the world. Stocked with 17,000 solar cells, the so-dubbed Solar Impulse 2 looked to break a world record and highlight the feasibility of solar energy by flying the long-distance powered only by the sun.

The plane finally completed its journey, in spite of a few complications, on July 26 when it touched down in Abu Dhabi. The effort is seen by many as a pioneering example of the power or alternative energies.

However, this first of its kind plane did not take shape overnight. Solar Impulse 2 is the brainchild of Swiss pilots Bertrand Piccard and Andre Borschberg, who have labored over the machine for the better part of 13 years.

This from IFLScience:

To keep its power running, the plane flew above the clouds to collect sunlight during the day, before dipping down lower at night to save its batteries. And owing to being completely solar powered, it packed a modest top speed of just 75 km/h (47 mph).


Solar-Powered Plane to Launch World Tour

In an effort to promote the use of alternative energy, the first solar-powered plane is well on its way to making its round-the-world tour.

After 13 year of invention and ingenuity, Swiss pilots Piccard and Andre Borschberg are beginning preparations to launch the tour in less than a week.


First Hybrid-Electric Airplane (Video)


An aircraft with a parallel hybrid engine – the first ever to be able to recharge its batteries in flight – has been successfully tested in the UK, an important early step towards cleaner, low-carbon air travel.
Credit: University of Cambridge

The United Kingdom is taking an important step towards cleaner, low-carbon air travel with the first successfully tested airplane with a parallel hybrid-electric engine. The novel aircraft is the first of its kind due to the ability to recharge its batteries while in flight.

This development comes out of the University of Cambridge in conjunction with Boeing, where they have worked to successfully develop a parallel hybrid-electric propulsion system for an aircraft that will use up to 30 percent less fuel than a comparable plane with a petrol-only engine.

To create the plane, the researches used the same basic principals as in a hybrid car. The aircraft uses a 4-stroke piston engine and an electric motor/generator. When maximum power is required – i.e. during takeoff – the engine and electric motor work together to power the plane. Once cruise height is reached, the motor switches to generator mode to recharge its batteries.