New fabric developed by UMD scientists.
Credit: Faye Levine, University of Maryland

When the temperature drops, we layer up. It’s the natural thing to do—until now. According to ScienceDaily, researchers at the University of Maryland have engineered a new fabric that can automatically change its properties to trap or release heat depending on external conditions.

The textile, made from synthetic yarn with a carbon nanotube coating, is activated by temperature and humidity: making it the first of its kind. When conditions are warm and moist, such as those near a sweating body, the fabric allows heat to pass through. When conditions become cooler and drier, the fabric reduces the heat that escapes. Acting like blinds, the individual strands of yarn open and close to transmit or block heat.

(more…)

Schematic representation of the movement of the flower-like particle as it makes its way through a cellular trap to deliver therapeutic genes. Credit: WSU

According to ScienceDaily, researchers have developed a new method to deliver drugs and therapies into cells at the nanoscale level.

What makes this new approach particularly promising is that it does not lead to toxic side effects, unlike other similar efforts attempted by researchers. The problem frequently faced was in the delivery of the therapeutic genes into cells, the nanomaterials only showing low delivery efficiency of medicine and possible toxicity. (more…)

Nomination Deadline: September 1, 2018

You are invited to nominate qualified candidate(s) for the Nanocarbons Division Richard E. Smalley Award.

The Nanocarbons Division Richard E. Smalley Research Award was established in 2006 to encourage research excellence in the areas of fullerenes, nanotubes and carbon nanostructures. The award consists of a scroll, a $1,000 prize and travel assistance to attend the 235th ECS biannual meeting in May 2019 in Dallas, TX for formal recognition. Explore the full award details on the ECS website prior to completing the electronic application.

(more…)

NanotechnologyEngineers are developing a new method of processing nanomaterials that could lead to faster and cheaper manufacturing of flexible, thin film devices, such as touch screens and window coatings.

The “intense pulsed light sintering” method uses high-energy light over an area nearly 7,000 times larger than a laser to fuse nanomaterials in seconds.

The existing method of pulsed light fusion uses temperatures of around 250 degrees Celsius (482 degrees Fahrenheit) to fuse silver nanospheres into structures that conduct electricity. But the new study, published in RSC Advances and led by Rutgers School of Engineering doctoral student Michael Dexter, shows that fusion at 150 degrees Celsius (302 degrees Fahrenheit) works well while retaining the conductivity of the fused silver nanomaterials.

The engineers’ achievement started with silver nanomaterials of different shapes: long, thin rods called nanowires in addition to nanospheres. The sharp reduction in temperature needed for fusion makes it possible to use low-cost, temperature-sensitive plastic substrates like polyethylene terephthalate (PET) and polycarbonate in flexible devices without damaging them.

(more…)

A new method to quickly produce fibers from carbon nanotubes is both handmade and high tech.

The method allows researchers to make short lengths of strong, conductive fibers from small samples of bulk nanotubes in about an hour.

In 2013, Rice University chemist Matteo Pasquali found a way to spin full spools of thread-like nanotube fibers for aerospace, automotive, medical, and smart-clothing applications. The fibers look like cotton thread but perform like metal wires and carbon fibers.

(more…)

Carbon NanotubesThe introduction of purified carbon nanotubes appears to have a beneficial effect on the early growth of wheatgrass, according to scientists. But in the presence of contaminants, those same nanotubes could do great harm.

The Rice University lab of chemist Andrew Barron grew wheatgrass in a hydroponic garden to test the potential toxicity of nanoparticles on the plant. To their surprise, they found one type of particle dispersed in water helped the plant grow bigger and faster.

They suspect the results spring from nanotubes’ natural hydrophobic (water-avoiding) nature that in one experiment apparently facilitated the plants’ enhanced uptake of water.

The lab mounted the small-scale study with the knowledge that the industrial production of nanotubes will inevitably lead to their wider dispersal in the environment. The study cites rapid growth in the market for nanoparticles in drugs, cosmetics, fabrics, water filters, and military weapons, with thousands of tons produced annually.

Despite their widespread use, Barron says few researchers have looked at the impact of environmental nanoparticles—whether natural or human-made—on plant growth.

(more…)

Researchers have captured organic nanoparticles colliding and fusing on video for the first time.

This unprecedented view of “chemistry in motion” will aid nanoscientists developing new drug delivery methods, as well as demonstrate how an emerging imaging technique opens a new window on a very tiny world.

(more…)

MicroscopeA team of engineers has found a simple, economical way to make a nano-sized device that can lift many times its own weight.

Their creation weighs 1.6 milligrams (about as much as five poppy seeds) and can lift 265 milligrams (the weight of about 825 poppy seeds) hundreds of times in a row.

Its strength comes from a process of inserting and removing ions between very thin sheets of molybdenum disulfide (MoS2), an inorganic crystalline mineral compound. It’s a new type of actuator—devices that work like muscles and convert electrical energy to mechanical energy.

The discovery—an “inverted-series-connected (ISC) biomorph actuation device”—appears in Nature.

“We found that by applying a small amount of voltage, the device can lift something that’s far heavier than itself,” says Manish Chhowalla, professor and associate chair of the materials science and engineering department of in the School of Engineering at Rutgers University.

“This is an important finding in the field of electrochemical actuators. The simple restacking of atomically thin sheets of metallic MoS2 leads to actuators that can withstand stresses and strains comparable to or greater than other actuator materials.”

(more…)

By: Chenfeng Ke, Dartmouth College

Nanomachines are tiny molecules – more than 10,000 lined up side by side would be narrower than the diameter of a human hair – that can move when they receive an external stimulus. They can already deliver medication within a body and serve as computer memories at the microscopic level. But as machines go, they haven’t been able to do much physical work – until now. The Conversation

My lab has used nano-sized building blocks to design a smart material that can perform work at a macroscopic scale, visible to the eye. A 3-D-printed lattice cube made out of polymer can lift 15 times its own weight – the equivalent of a human being lifting a car.

Nobel-winning roots are rotaxanes

The design of our new material is based on Nobel Prize-winning research that turned mechanically interlocked molecules into work-performing machines at nanoscale – things like molecular elevators and nanocars.

Rotaxanes are one of the most widely investigated of these molecules. These dumbbell-shaped molecules are capable of converting input energy – in the forms of light, heat or altered pH – into molecular movements. That’s how these kinds of molecular structures got the nickname “nanomachines.”

(more…)

HydrogenSometimes the biggest advancements are the smallest in size.

A multidisciplinary team from Sandia National Laboratories recently demonstrated that notion by using nanoparticles and a nanoconfinement system to improve the performance of hydrogen storage materials. The researchers believe that this development is a step in the right direction to improve efficiency of hydrogen fuel cell electric vehicles.

Currently, hydrogen fuel cell electric vehicles store hydrogen as a high-pressure gas. However, the researchers argue that a solid material would be able to act like a sponge, with the ability to absorb and release hydrogen more efficiently. Using a hydrogen storage material of this nature could increase the amount of hydrogen able to be stored in a vehicle. In order to be efficient and competitive in the transportation sector, a hydrogen fuel cell electric vehicle would have to be able to travel 300 miles before refueling.

“There are two critical problems with existing sponges for hydrogen storage,” says Vitalie Stavila, co-author of the study and past ECS member. “Most can’t soak up enough hydrogen for cars. Also, the sponges don’t release and absorb hydrogen fast enough, especially compared to the 5 minutes needed for fueling.”

(more…)

  • Page 2 of 5