According to the Georgia Institute of Technology, crab shells and trees may soon replace the flexible plastic packaging used to keep food fresh. The innovative process involves spraying multiple layers of chitin from crab shells and cellulose from trees to form a flexible film similar to plastic packaging film. Once fully dried, the material is flexible, strong, transparent, and compostable.

Not only will these lifeforms become a source of sustainable and renewable wrapping, but they will also help improve food quality. Compared to conventional plastic packaging, the new technology offers a 67 percent reduction in oxygen permeability, allowing food to stay fresh even longer.


Grass could become an affordable source of clean, renewable energy, according to a team of researchers from Cardiff University.

A recently published study states that significant amounts of hydrogen could be extracted from grass with the help of sunlight and a cheap catalyst.

This from Cardiff University:

It is the first time that this method has been demonstrated and could potentially lead to a sustainable way of producing hydrogen, which has enormous potential in the renewable energy industry due to its high energy content and the fact that it does not release toxic or greenhouse gases when it is burnt.

Read the full article.

“Hydrogen is seen as an important future energy carrier as the world moves from fossil fuels to renewable feedstocks,” says Michael Bowker, co-author of the study, “and our research has shown that even garden grass could be a good way of getting hold of it.”


From Bourbon to Batteries

There is no short supply of bourbon in Kentucky. But like many products, the distillation of the state’s unofficial beverage produces a sludgy waste known as bourbon stillage. The question for one researcher from the University of Kentucky’s Center for Applied Energy Research was how to repurpose that waste into something with tremendous potential.

To answer that question, ECS member Stephen Lipka and his Electrochemical Power Sources group set out to transform the bourbon stillage through a process called hydrothermal carbonization, where the liquid waste gets a dose of water and heat to produce green materials.

(MORE: See more of Lipka’s work in the ECS Digital Library.)

“In Kentucky, we have this stillage that contains a lot of sugars and carbohydrates so we tried it and it works beautifully,” says Lipka. “We take these [green materials] and we then do additional post-processing to convert it into useful materials that can be used for batteries.”


From Solar Energy to Liquid Fuel

Bill Gates—tech mogul, business magnate, and philanthropist for all things good—recently spoke to CNN about the newest technology he believes could transform the world’s energy infrastructure: solar fuels.

Solar fuels have the ability to address energy storage intermittency issues, which is currently one of the biggest challenges in sustainable energy technology according to Gates.


Nate Lewis, ECS member since 1982, is one of the leading scientists at the forefront of solar fuel research. Taking inspiration from nature, Lewis and his team aspire to mimic the naturally occurring process of photosynthesis but with higher efficiency levels. Through taking the energy of the sun and storing it in chemical fuels, Lewis and other researchers in the field are propelling the vision of a clean, efficient, and affordable future of energy.

Wind energy has seen a lot of positive momentum over the past few years in a global effort to help facilitate change in the energy infrastructure. With over $100 billion invested in wind energy in 2014 alone, this technology is one of the fastest growing sectors in the world. Today we’re celebrating Global Wind Day by looking at the innovation that has happened in this sector and taking a peek at what is yet to come.

Over the years, wind energy has seen some dramatic changes. In the 1980s, California was the hub of all wind energy with 90 percent of the world’s installed wind energy capacity. Now, countries such as China, Germany, Spain, India, and the United States have all shifted a substantial percentage of energy needs toward wind. In just a short 12-year period between 2000 and 2012, wind energy has increased over 16 times to more than 282,000 MW of operating wind capacity.

Scientists across the globe are continuing to tap into this technology in order to produce higher efficiency levels at lower price points. Take a look at the work some of our scientists are doing in the sector:


Rutgers researchers Martha Greenblatt (left) and Chalres Dismukes (right) have developed a cost-effective energy storage technology to advance sustainable energy.Image: Nick Romaneko/Rutgers University

Rutgers researchers Martha Greenblatt (left) and Chalres Dismukes (right) have developed a cost-effective energy storage technology to advance sustainable energy.
Image: Nick Romaneko/Rutgers University

Dan Fatton, ECS Director of Development & Membership services, spotted an article in My Central Jersey that details a potential game changer in sustainable energy.

Researchers from Rutgers University may have just found the key to advancing renewable resources and potentially growing an energy infrastructure based on sustainability.

The researchers from Rutgers’ Chemistry and Chemical Biology Department have recently developed a novel patent-pending energy storage technology grounded in electrochemical science. The new technology is said to not only be cost-effective, but also a highly efficient way to store sustainable energy for later use.

The research published in the journal Energy & Environmental Science addresses the feasibility of widespread utilization of sustainable power.

“We have developed a compound, Ni5P4 (nickel-5 phosphide-4), that has the potential to replace platinum in two types of electrochemical cells: electrolyzers that make hydrogen by splitting water through hydrogen evolution reaction (HER) powered by electrical energy, and fuel cells that make electricity from combining hydrogen and oxygen,” co-author of the study Charles Dismukes explained to My Central Jersey.


ECS Executive Director Roque Calvo sits down with the National Renewable Energy Laboratory’s John A. Turner to talk about all things renewable energy and try to connect the dots between the science, our everyday lives, and the sustainability of the planet.

Listen to the first ECS Podcast below and download it for free! (Also available through the iTunes Store and RSS Feed.)


New Tire Harnesses Heat to Power Your Car

The tire can generate energy from friction and heat. However, Goodyear has yet to describe the materials to be used.Image: YouTube/Goodyear

The tire can generate energy from friction and heat. However, Goodyear has yet to describe the materials to be used.
Image: YouTube/Goodyear

There’s no question that engineers and manufacturers around the world are moving away from the fuel-based car to the electric vehicle. In order to make these cars possible, they must improve in efficiency. Now, one company is looking outside the box for the answer to electric car sustainability.

Goodyear has just announced the concept of their new tire, which will harvest heat in a variety of ways to help power electric vehicles. The new BH-03 tire is poised to be able to absorb heat while static due to the ultra-black texture of the tire, as well as take advantage of the natural occurrence of friction as the tire moves.


Plant Power Meets Solar Power

By combining green wall technology and solar panels, researchers have been able to generate renewable energy during both night and day.Image: University of Cambridge

By combining green wall technology and solar panels, researchers have been able to generate renewable energy during both night and day.
Image: University of Cambridge

Researchers from Cambridge University have developed what is being considered “the greenest bus shelter” by combining solar power and plant power.

The scope of this project is much more vast than simply powering a bus shelter. Researchers are looking at this development as a possible answer to affordable power generation solutions for developing countries.

“To address the world’s energy needs, we need a portfolio of many different technologies, and it’s even better if these technologies work in synergy,” said Dr. Paolo Bombelli of Cambridge University’s Department of Biochemistry.

The bus shelter has the potential to power itself during both night and day times by harvesting the natural electron by-product of photosynthesis and metabolic activity, thus creating electrical current.


First Hybrid-Electric Airplane (Video)


An aircraft with a parallel hybrid engine – the first ever to be able to recharge its batteries in flight – has been successfully tested in the UK, an important early step towards cleaner, low-carbon air travel.
Credit: University of Cambridge

The United Kingdom is taking an important step towards cleaner, low-carbon air travel with the first successfully tested airplane with a parallel hybrid-electric engine. The novel aircraft is the first of its kind due to the ability to recharge its batteries while in flight.

This development comes out of the University of Cambridge in conjunction with Boeing, where they have worked to successfully develop a parallel hybrid-electric propulsion system for an aircraft that will use up to 30 percent less fuel than a comparable plane with a petrol-only engine.

To create the plane, the researches used the same basic principals as in a hybrid car. The aircraft uses a 4-stroke piston engine and an electric motor/generator. When maximum power is required – i.e. during takeoff – the engine and electric motor work together to power the plane. Once cruise height is reached, the motor switches to generator mode to recharge its batteries.


  • Page 1 of 2
    • 1
    • 2