ETDNomination Deadline: September 1, 2016

The ECS Energy Technology Division invites you to nominate qualified candidate(s) for the following division awards.

Energy Technology Division Research Award: established in 1992 to encourage excellence in energy related research and to encourage publication in the Journal of The Electrochemical Society.

Energy Technology Division Supramaniam Srinivasan Young Investigator Award: established in in 2011 to recognize and reward an outstanding young researcher in the field of energy technology.

Energy Technology Division Graduate Student Award: established in 2012 to recognize and reward promising young engineers and scientists in fields pertaining to this Division.

Award recipients will all be asked to present a lecture to the Energy Technology Division at the 231st ECS biannual meeting in May/June, 2017 in New Orleans, LA. Explore the full award details on the ECS web site, paying keen attention to the specific application requirements prior to completing the electronic application.

P.S. Energy Technology Division Awards are part of ECS Honors & Awards Program, one that has recognized professional and volunteer achievement within our multi-disciplinary sciences for decades. Learn more about various forms of ECS recognition and those who share the spotlight as past award winners.

Lithium-oxygen battery

Image: MIT

New lithium-oxygen battery technology proposed by researchers from MIT, Argonne National Laboratory, and Peaking University, promises a scalable, cheap, and safe option in energy storage.

There is immense promise for lithium-oxygen batteries in such applications as electric cars and portable electronics. In fact, they are between five and 15 times more efficient than lithium-ion batteries in transportation applications due to their high energy output potential in proportion to their weight.

But there have been complications in developing and especially implementing these batteries in the marketplace. Primarily, they’ve been known to waste energy and degrade quickly.

But this new study, co-authored by ECS member and past IMLB chair Khalil Amine, states that the theoretical potential for lithium-oxygen batteries could be met while overcoming some of the biggest barriers prohibiting the technology.

Once of the primary focuses of the group was overcoming the mismatch in voltages that happens in charging and discharging the battery. Because the output voltage is more than 1.2 volts lower that that used to charge, there is typically a significant power loss.

“You waste 30 percent of the electrical energy as heat in charging,” says Ju Li, professor at MIT and co-author of the paper. “It can actually burn if you charge it too fast.”

(more…)

Two researchers from Cornell University recently put forward research describing their development of an aluminum-based electrochemical cell that has the potential to capture carbon emissions while simultaneously generating electricity.

Globally, carbon dioxide is the number one contributor to harmful greenhouse gas emissions. These emissions accelerate climate change, leading to such devastating effects as rising sea levels that can dislocate families and radical local climates that hurt food production levels.

(MORE: Read past meeting abstracts by co-author of the research, Lynden A. Archer, for free.)

While there have been efforts to reduce the amount of carbon pumped into the atmosphere, the current levels are still far too high. Because of this, some researchers – including the duo from Cornell – have turned their attention to capturing carbon.

(more…)

Grass could become an affordable source of clean, renewable energy, according to a team of researchers from Cardiff University.

A recently published study states that significant amounts of hydrogen could be extracted from grass with the help of sunlight and a cheap catalyst.

This from Cardiff University:

It is the first time that this method has been demonstrated and could potentially lead to a sustainable way of producing hydrogen, which has enormous potential in the renewable energy industry due to its high energy content and the fact that it does not release toxic or greenhouse gases when it is burnt.

Read the full article.

“Hydrogen is seen as an important future energy carrier as the world moves from fossil fuels to renewable feedstocks,” says Michael Bowker, co-author of the study, “and our research has shown that even garden grass could be a good way of getting hold of it.”

(more…)

Does this summer feel a little warmer than usual? Well, that’s because it is.

According to NASA, the first six months of 2016 have been the warmest half-year ever recorded. Pair that with the smallest monthly Artic Sea ice extent in that same period of time, and these two indicators give a grim image of the accelerating pace of climate change.

In a report, NASA states that the global temperature has increased by 2.4°F since record keeping began in the 1800s. Additionally, Artic Sea ice has been declining at a rate of 13.4 percent per decade.

“It has been a record year so far for global temperatures, but the record high temperatures in the Arctic over the past six months have been even more extreme,” says Walt Mkeier, a sea ice researcher with NASA. “This warmth as well as unusual weather patterns have led to the record low sea ice extents so far this year.”

If climate continues down this same path, the effects could be devastating for the world. However, electrochemical and solid state science may have some of the answers to mitigate climate change.

(more…)

As the landscape of energy harvesting evolves, so do the devices that store that energy. According to researchers from Toyohashi University, all-solid-state lithium rechargeable batteries are at the top of the list of promising future energy storage technologies due to their high energy density, safety, and extreme cycle stability.

ECS member Yoji Sakurai and a team from the university’s Department of Electrical and Electronic Information Engineering recently published a paper detailing their development to advance the all-solid-state batteries, which pushes past barriers related to electrochemical performance.

(MORE: Read Sakurai’s previously published paper in ECS Electrochemistry Letters.)

(more…)

Fuel cells have existed (at least in theory) since the early 1800s, but have spent much of their existence as laboratory curiosities. It wasn’t until the mid-1900s that fuel cells finally got their time in the spotlight with the first major application in the Gemini and Apollo space flights.

While fuel cells have moved forward in the competitive field of energy storage, there are still many barriers that researchers are attempting to overcome. Especially today, with society making a conscious effort to move toward more sustainable types of power, much emphasis has been put on solid oxide fuel cells and moving them from the lab to the market.

(MORE: Get additional information on the evolution of fuel cell technology.)

A team of researchers from Washington State University believes they may have taken a crucial step in doing just that.

Moving fuel cells forward

The team recently published a paper detailing what they believe to be a key step in SOFC improvement and eventually implementation in the marketplace. These small improvements could mean big changes.
SOFCs, unlike other types of fuel cells, do not require the use of expensive materials (i.e. platinum) to develop.

“Solid oxide fuel cells are very fuel flexible in contrast to other kinds of fuel cells, like alkaline fuel cells,” Subhash Singhal, Battelle Fellow Emeritus at Pacific Northwest National Laboratory and esteemed fuel cell expert, told ECS in a previous interview. “Solid oxide fuel cells can use a variety of fuel: natural gas, coal gas, and even liquid fuels like diesel and gasoline.”

(more…)

From Bourbon to Batteries

There is no short supply of bourbon in Kentucky. But like many products, the distillation of the state’s unofficial beverage produces a sludgy waste known as bourbon stillage. The question for one researcher from the University of Kentucky’s Center for Applied Energy Research was how to repurpose that waste into something with tremendous potential.

To answer that question, ECS member Stephen Lipka and his Electrochemical Power Sources group set out to transform the bourbon stillage through a process called hydrothermal carbonization, where the liquid waste gets a dose of water and heat to produce green materials.

(MORE: See more of Lipka’s work in the ECS Digital Library.)

“In Kentucky, we have this stillage that contains a lot of sugars and carbohydrates so we tried it and it works beautifully,” says Lipka. “We take these [green materials] and we then do additional post-processing to convert it into useful materials that can be used for batteries.”

(more…)

toyota-collage

From left to right: Elizabeth Biddinger, City College of New York; Joaquin Rodriguez Lopez, University of Illinois at Urbana-Champaign; Joshua Snyder, Drexel University

The ECS Toyota Young Investigator Fellowship Selection Committee has selected three recipients who will receive a minimum of $50,000 each for fellowships for projects in green energy technology. The winners are Professor Elizabeth Biddinger, City College of New York; Professor Joaquin Rodriguez Lopez, University of Illinois at Urbana-Champaign; and Professor Joshua Snyder, Drexel University.

The ECS Toyota Young Investigator Fellowship, a partnership between The Electrochemical Society and Toyota Research Institute of North America (TRINA), a division of Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA), is in its second year. A diverse applicant pool of more than 100 young professors and scholars pursuing innovative electrochemical research in green energy technology responded to ECS’s request for proposals.

“Scientists and engineers seek to unveil what is possible and to exploit that knowledge to provide solutions to the myriad of problems facing our world,” says ECS Executive Director Roque Calvo. “We are proud to have the continued support of Toyota in this never ending endeavor to uncover new frontiers and face new challenges.”

The ECS Toyota Young Investigator Fellowship aims to encourage young professors and scholars to pursue research in green energy technology that may promote the development of next-generation vehicles capable of utilizing alternative fuels.

Global development of industry and technology in the 20th century increased production of vehicles and the growing population have resulted in massive consumption of fossil fuels. Today, the automotive industry faces three challenges regarding environmental and energy issues:

(1) Finding a viable alternative energy source as a replacement for oil
(2) Reducing CO2 emissions
(3) Preventing air pollution

(more…)

A new collaborative study from Delft University and École Polytechnique Fédérale de Lausanne (EPFL) shows a highly-efficient, simple way to produce hydrogen through solar water-splitting at a low cost.

The team of researchers, including 2016 PRiME Plenary speaker Michael Graetzel, state that by using Earth-abundant catalysts and solar cells, effective water-splitting systems could sustainably produce affordable hydrogen.

Graetzel, known for his low-cost, high-efficiency solar cell that won him the 2010 Millennium Technology Grand Prize, helped lead the effort by separating the positive and negative electrodes using a bipolar membrane, leading to a simple yet effective new method.

Hydrogen economy

The technology behind water-splitting is essential in an economy shifting toward more hydrogen use as alternative fuels. While efficient methods of generating hydrogen do currently exist, the techniques used to produce the gas consume large amounts of fossil fuels.

Moving toward a hydrogen economy could help alleviate the effects of climate change, but only if the means used to produce the gas are also sustainable. This is where water-splitting comes in.

(more…)

ECS
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.