Invisible wood

Image: University of Maryland

Wood has been a key building block for much of history infrastructure. While we may have witnessed wood fade out in lieu of other materials in more recent times, it’s about to make a comeback in an unexpected way.

Past ECS member Liangbing Hu of the University of Maryland, College Park is developing a stronger, transparent wood that can be used in place of less environmentally friendly materials such as plastic.

But this development’s novelty really lies in the transparency factor. So many structures built today rely on the use of glass and steel. By replacing those building materials with the transparent wood, the world of design could be revolutionized while heating costs and fuel consumption rates are simultaneously reduced.

This from CNN:

Hu describes the process of creating clear wood in two steps: First, the lignin — an organic substance found in vascular plants — is chemically removed. This is the same step used in manufacturing pulp for paper. The lignin is responsible for the “yellow-ish” color of wood. The second step is to inject the channels, or veins of the wood by filling it with an epoxy — which can be thought of as strengthening agent, Hu says.

(more…)

The National Park Service, which oversees more than 400 sites across the country, celebrated its 100th birthday on Aug. 25, 2016. During the centennial anniversary, Popular Science caught up with Bill Nye to discuss how climate change is affecting these public lands and their inhabitants.


Bill Nye On Climate Change In Our National Parks by PopSci
Learn more about what our scientists are doing to provide answers to growing global energy needs with clean, alternative solutions.

Solar-to-Hydrogen Production

The device is able to convert solar energy into hydrogen at a rate of 14.2 percent, and has already been run for more than 100 hours straight.
Image: Infini Lab/EPFL

One of the biggest barriers between renewables and widespread grid implementation has been the issue of intermittency. How can we meet a nation’s energy demands with solar when the sun goes down?

In an effort to move past these barriers toward a cleaner energy infrastructure, a new paper published in the Journal of The Electrochemical Society describes an effective, low-cost solution for storing solar energy.

The research team from Ecole Polytechnique Fédérale de Lausanne is looking to covert solar energy into hydrogen through water electrolysis. At its core, the concept revolves around using solar-produced electricity to split water molecules into hydrogen and oxygen, leaving clean hydrogen to be stored as future energy or even as a fuel.

But this idea is not new to the scientific community. However, the research published in JES provides answer to continuous barriers in this field related to stability, scaling, and efficiency.

(more…)

Renewable grideThe world’s next energy revolution is looming nearer.

In order to bolster this transformation, the U.S. Department of Energy has been funding 75 projects in the energy technology field, enabling cutting-edge research into energy conversion and storage. This effort is part of the DOE’s goal to “decarbonize” the U.S. energy infrastructure by the middle of the country.

One of the most promising projects funded by the DOE is led by ECS member Michael Aziz, where he and his team from Harvard are addressing challenges in grid energy storage.

Energy storage has become one of the largest barriers in the widespread implementation of renewables. By offering a cost-effective, efficient answer to energy storage, the issues of intermittency in power sources such as wind and solar could be answered.

Aziz and his team are addressing issues in energy storage with the development of a flow battery based on inexpensive organic molecules in a water-based electrolyte. The team is focusing on using quinone molecules, which can be found in such plant sources as rhubarb or even oil waste. The quinone molecules allow energy to be stored in a water-based solution at room temperature.

Aziz recently discussed some of his work in quinon-bromide flow batteries as part of the Journal of The Electrochemical Society Focus Issue on Redox Flow Batteries-Reversible Fuel Cells.

(more…)

In recent years, the focus on alternative means of transportation has almost exclusively highlighted automobiles. But ECS member Telpriore Gregory Tucker is shifting his attention in another direction: electric bikes.

Tucker was recently awarded the 2016 Arizona Legislative District 27-New Business of the Year by the Arizona House of Representatives for his sustainable business efforts with the U.S. Battery Bike Company. Now, Tucker is in full gear with his new company, Sirius E-Bikes, and is discussing the advantages of electric bikes in his recently penned article in Arizona’s Green Living magazine.

This from Green Living:

All e-bikes can legally travel at a max speed of 20 mph without pedaling, which is twice as fast as an average rider on a regular bicycle. In 2015, California passed a law allowing some e-bikes to reach 28 mph with the condition of added pedaling. Electric bicycle technology has improved specifically in the lithium-ion battery pack, the battery management system, the electric motor, and of course the integration for an overall aesthetically appealing frame.

(more…)

EVElectric vehicles have become more visible in the automobile market over the past few years, but many potential buyers still cite one thing as a major deterrent in going electric: range anxiety.

Range anxiety is a term many use to describe the fear of an EV’s battery running out of juice while driving, leaving them stranded away from a charging station.

However, a new study published by a team from MIT and the Santa Fe Institute looked at data in order to come to a conclusion that range anxiety is not something that most drivers really need to worry about.

Overcoming range anxiety

“What we found was that 87 percent of vehicles on the road could be replaced by a low cost electric vehicle available today, even if there’s no possibility to recharge during the day,” senior author of the study, Jessika Trancik, told The Washington Post.

As technology progresses, EVs continue to have a leg up on traditional gasoline-powered vehicles. In 2015, battery prices for EVs fell by 35 percent. By 2040, experts predict that long-range EV prices will be less than $22,000. Additionally, an expected 35 percent of all new cars world-wide are expected to come with a plug.

Even as the technology progresses, sociological barriers such as range anxiety remain as a factor that stands in the way of a full market boom of EVs.

(more…)

NuclearMany scientists believe we’re at the tipping point of our energy technology future. With the advancement of new, alternative energy sources, some are left to wonder what will happen to the energy landscape as a whole.

While nuclear power has energized much of the world over the past 50 years, the establishment of new nuclear power plants has been nonexistent in recent times in light of other alternatives such as solar and wind. Now, with California phasing out its last nuclear power plant in Diablo Canyon, many are left to wonder just what role nuclear will play in the future of energy.

A turning point

During the oil crisis of the 1970s, global conversations about the future of energy production began to hit the mainstream. If fossil fuels don’t warrant consistent dependency, how would the U.S. power future generations? The answer: nuclear.

“At that time we were thinking we’d build up these nuclear power plants everywhere and they would provide free electricity because it would just be too cheap to meter,” ECS Secretary Jim Fenton previously told ECS.

The thought was nuclear could provide such cheap and plentiful amounts of energy that not only would it be free to the consumer, but there would be an overproduction. This encouraged new research in devices such as flow batteries to store this excess energy.

But those expectations turned out to be wrong.

(more…)

Nissan is taking a big step toward eco-friendly transportation with the development of their new solid oxide fuel cell vehicle.

The science behind the vehicle, which the car company has branded e-Bio Fuel-Cell, uses bio-ethanol fuel to generate electricity through SOFC technology. Nissan states that sugarcane, corn, and soy can all be used as means of fuel – resulting in a carbon neutral cycle when the car hits the road.

Nissan claims a higher driving range and lower charge time than conventional electric vehicles, with a cruising range of more than 600 km (373 miles).

The company expects the vehicle to be ready for commercial purchase as early as 2020.

solarA team of researchers from the National Renewable Energy Laboratory, in collaboration with a team from Shanghai Jiao Tong University, has developed a method to improve perovskite solar cells – raising both efficiency and reliability levels while make them easier to produce.

Perovskite cells have become one of the more promising technologies in the future of energy. In 2010, the young technology functioned at under 4 percent efficiency. Fast-forward to 2016, and researchers and showing efficiency levels of upwards of 20 percent.

However, it’s been difficult to produce these cells and the lack of stability and dependability has become a focal issue.

This from NREL:

The research involved hybrid halide perovskite solar cells and revealed treating them with a specific solution of methyl ammonium bromide (MABr) would repair defects, improving efficiency. The scientists converted a low-quality perovskite film with pinholes and small grains into a high-quality film without pinholes and with large grains. Doing so boosted the efficiency of the perovskite film in converting sunlight to 19 percent.

(more…)

PlasticResearchers have taken a step toward the development of renewable plastics – a promising transformation from current plastics made from oil. The biodegradable material is possible due to the creation of a new catalyst.

Over the past 50 years, the global production of plastic has grown tremendously. According to World Watch Institute, over 299 trillion tons of plastic were produced in 2013. Unfortunately, as plastic production increases, recycling rates lag. Of the 299 trillion tons of plastic produced, between 22 and 43 percent made its way to landfills around the world, thereby wasting resources and negatively impacting the environment.

Biodegradable plastics could provide a potential solution to this issue. Currently, researchers are working to make the plastics – produced completely from renewable resources – match the price and performance of their petroleum-based counterparts.

(more…)

ECS
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.