A Revolution in Renewable Energy

Towering like a beacon of hope in Germany’s North Sea stand wind turbines. Stretching as high as 60-story buildings and standing as far as 60 miles from the mainland, the turbines are part of Germany’s push to find a solution to global warming.

Some call it change. Some call it transformation. We call it a revolution.

According to an article in the The New York Times, it is expected that by the end of the year, scores of new turbines will be set in place – thus allowing low-emission electricity to be sent to German cities hundreds of miles south.

(more…)

Climate Case for Open Access

This weekend I watched the recently released short film, Disruption, which is available online for free viewing. In less than one-hour, the scientists, authors and activists featured in the film highlight some truly frightening data and trends. As those who believe in the vast majority of the science already understand, we must do more to limit greenhouse gas emissions if we want any chance of keeping global temperature change below 2°C relative to pre-industrial levels.

Thankfully, the conversion to a clean energy economy is already feasible, both economically and technologically. Countries like Germany have been demonstrating the possibilities of renewable energy, despite having sunshine similar to that of Alaska. We also know the scientists of ECS are currently working on even more exciting research to improve our understanding and technological capabilities in photovoltaics, nanotechnology and fuel cells, among other cutting-edge fields.

In my view, the bold pledge to move toward open access at ECS has serious implications for action on climate change. If we can make the scientific research results and latest findings more widely accessible, we may speed up the scientific discovery process. Perhaps a young scientist in the developing world will unlock the key to some perplexing scientific dilemma, once we’ve made the latest findings more freely available in an ECS journal. Many of us believe we can accelerate the pace of innovation, and help solve critical challenges by opening access to scientific research. You can support those efforts by donating to the ECS Publications Endowment.

PeoplesClimate.orgIn the meantime, I plan to attend the Peoples Climate March on Sunday, September 21. There is an entire staging area for scientists, among the various  1,500 other groups, including students, environmentalists, labor unions, and community activists. Together, we’ll be demanding action on climate change, just two days before President Obama and other world leaders are set to attend a Climate Summit at the United Nations hosted by Secretary General Ban Ki-moon.

The researchers at Virginia Tech have successfully demonstrated the concept of a sugar biobattery that can completely convert the chemical energy in sugar substrates into electricity. Credit: Virginia Tech University

The researchers at Virginia Tech have successfully demonstrated the concept of a sugar biobattery that can completely convert the chemical energy in sugar substrates into electricity.
Credit: Virginia Tech University

According to new studies, the future of energy storage and conversion may be something that’s sitting in your kitchen cupboard.

A new breakthrough out of Virginia Tech demonstrates that a sugar-powered biobattery has the potential to outperform the current lithium-ion batteries on many fronts.

Not only is the energy density of the sugar-powered battery significantly higher than that of the lithium-ion battery, but the sugar battery is also less costly than the li-ion, refillable, environmentally friendly, and nonflammable.

This from LiveScience:

This nature-inspired biobattery is a type of enzymatic fuel cell (EFC) — an electrobiochemical device that converts chemical energy from fuels such as starch and glycogen into electricity. While EFCs operate under the same general principles as traditional fuel cells, they use enzymes instead of noble-metal catalysts to oxidize their fuel. Enzymes allow for the use of more-complex fuels (such as glucose), and these more-complex fuels are what give EFCs their superior energy density.

Read the full article here.

The scientists hope to increase the power density, extend the lifetime, and reduce the cost of electrode materials in order for this energy-dense sugar biobattery to become the technology of the future.

Find the full findings in this issue of Nature Communications.

Learn more about this topic by reading a recently published open access article via ECS’s Digital Library.

Matt Damon

Damon opts to use toilet water in lieu of fresh H2O for his ALS Ice Bucket Challenge.

Like many other celebrities, Matt Damon has decided to do his part and participate in the ALS Ice Bucket Challenge. Though, the award-winning actor and humanitarian was a bit conflicted about wasting a bucket of clean water.

His solution? Use toilet water, of course.

“It posed kind of a problem for me, not only because there’s a drought here in California,” Damon explained in his video, “but because I co-founded Water.org, and we envision the day when everybody has access to clean drinking water – and there are about 800 million people in the world who don’t – and so dumping a clean bucket of water on my head seemed a little crazy.”

According to Water.org, there are about 2.4 billion people globally who still lack access to clean sanitation systems. Through his ALS Ice Bucket Challenge, Damon saw a way to not only contribute to a good cause – but also educate about the very important global issue of sanitation.

“For those of you like my wife who think this is really disgusting, keep in mind that the water in our toilets in the West is actually cleaner than the water that most people in the developing world have access too.”

ECS is also focusing on the global issue of sanitation by partnering with the Bill & Melinda Gates Foundation at the 4th International Electrochemical Energy Summit. By distributing over $200,000 in funding, ECS hopes to empower researchers and bolster innovate research. Join us in Cancun, October 5-9, to take part in this multi-day workshop.

Lead-acid car batteries

According to engineers at MIT, we can recycle them to make long-lasting, low-cost solar panels. Credit: Christine Daniloff

The old lead-acid battery in your car may not be as useless or environmentally dangerous as was once thought. In fact, these batteries may be the answer to creating a cheap source of green energy.

According to engineers at MIT, old lead-acid batteries can be recycled and easily converted into long-lasting, low-cost solar panels. So far, the solar cells in the panels have yielded promising results – achieving over 19 percent efficiency in converting sunlight to useable electricity.

(more…)

  • Page 2 of 2
    • 1
    • 2