BatteryA novel compound called 3Q conducts electricity and retains energy better than other organic materials currently used in batteries, researchers report.

“Our study provides evidence that 3Q, and organic molecules of similar structures, in combination with graphene, are promising candidates for the development of eco-friendly, high capacity rechargeable batteries with long life cycles,” says Loh Kian Ping, professor in the chemistry department at NUS Faculty of Science.

Rechargeable batteries are the key energy storage component in many large-scale battery systems like electric vehicles and smart renewable energy grids. With the growing demand of these battery systems, researchers are turning to more sustainable, environmentally friendly methods of producing them. One option is to use organic materials as an electrode in the rechargeable battery.

Organic electrodes leave lower environment footprints during production and disposal which offers a more eco-friendly alternative to inorganic metal oxide electrodes commonly used in rechargeable batteries.

The structures of organic electrodes can also be engineered to support high energy storage capabilities. The challenge, however, is the poor electrical conductivity and stability of organic compounds when used in batteries. Organic materials currently used as electrodes in rechargeable batteries—such as conductive polymers and organosulfer compounds—also face rapid loss in energy after multiple charges.

(more…)

Focus IssuesThe Journal of The Electrochemical Society (JES) Focus Issue on Oxygen Reduction and Evolution Reactions for High Temperature Energy Conversion and Storage is now complete, with 16 open access papers published in the ECS Digital Library.

“In this new and exciting era of distributed electricity generation, the modularity (sub-kW to 100 kW systems) with minimal efficiency loss at small scales makes solid oxide fuel cells (SOFCs) an exciting energy conversion technology,” the authors say in the focus issue’s preface. “This focus issue presents some of the latest research in understanding fundamental mechanisms of ORR and OER, and highlights new materials and concepts to achieve both greater performance and long-term durability.”

Read the full JES Focus Issue on Oxygen Reduction and Evolution Reactions for High Temperature Energy Conversion and Storage.

ECS would like to thank JES technical editor Tom Fuller and this focus issue’s guest editors Sean Bishop, Ainara Aguadero, and Xingbo Liu.

Safer Batteries with Nanodiamonds

BatterySafety concerns regarding lithium-ion batteries have been making headlines in light of smartphone fires and hoverboard explosions. In order to combat safety issues, at team of researchers from Drexel University, led by ECS member Yury Gogotsi, has developed a way to transform a battery’s electrolyte solution into a safeguard against the chemical process that leads to battery fires.

Dendrites – or battery buildups caused by the chemical reactions inside the battery – have been cited as one of the main causes of lithium-ion battery malfunction. As more dendrites compile over time, they can breach the battery’s separator, resulting in malfunction.

(MORE: Read more research by Gogotsi in the ECS Digital Library.)

As part of their solution to this problem, the research team is using nanodiamonds to curtail the electrochemical deposition that leads to the short-circuiting of lithium-ion batteries. To put it in perspective, nanodiamond particles are roughly 10,000 times smaller than the diameter of a single hair.

(more…)

Juan Pablo EsquivelIn its first Science for Solving Society’s Problems Challenge, ECS partnered with the Bill & Melinda Gates Foundation to leverage the brainpower of electrochemists and solid state scientists, working to find innovative research solutions to some of the world’s most pressing issues in water and sanitation. A total of seven projects were selected, resulting in a grand total of $360,000 in funding.

The researchers behind one of those projects recently published an open access paper in the Journal of The Electrochemical Society discussing their results in pursuing a single-use, biodegradable and sustainable battery that minimizes waste. The paper, “Evaluation of Redox Chemistries for Single-Use Biodegradable Capillary Flow Batteries,” was published August 18 and authored by Omar Ibrahim, Perla Alday, Neus Sabaté, Juan Pablo Esquivel (pictured with prototype at right), and Erik Kjeang.

(more…)

By: Timothy H. Dixon, University of South Florida

Climate marchThis summer I worked on the Greenland ice sheet, part of a scientific experiment to study surface melting and its contribution to Greenland’s accelerating ice losses. By virtue of its size, elevation and currently frozen state, Greenland has the potential to cause large and rapid increases to sea level as it melts.

When I returned, a nonscientist friend asked me what the research showed about future sea level rise. He was disappointed that I couldn’t say anything definite, since it will take several years to analyze the data. This kind of time lag is common in science, but it can make communicating the issues difficult. That’s especially true for climate change, where decades of data collection may be required to see trends.

A recent draft report on climate change by federal scientists exploits data captured over many decades to assess recent changes, and warns of a dire future if we don’t change our ways. Yet few countries are aggressively reducing their emissions in a way scientists say are needed to avoid the dangers of climate change.

While this lack of progress dismays people, it’s actually understandable. Human beings have evolved to focus on immediate threats. We have a tough time dealing with risks that have time lags of decades or even centuries. As a geoscientist, I’m used to thinking on much longer time scales, but I recognize that most people are not. I see several kinds of time lags associated with climate change debates. It’s important to understand these time lags and how they interact if we hope to make progress.

(more…)

In May 2017 during the 231st ECS Meeting, we sat down with Doron Aurbach, professor at Bar-Ilan University in Israel, to discuss his life in science, the future of batteries, and scientific legacy. The conversation was led by Rob Gerth, ECS’s director of marketing and communications.

During the 231st ECS Meeting, Aurbach received the ECS Allen J. Bard Award in Electrochemical Science for his distinguished contributions to the field. He has published more than 540 peer-reviewed papers, which have received more than 37,000 citations. Doron serves as a technical editor for the Journal of The Electrochemical Society and is an ECS fellow. His work in fundamental battery research has received recognition world-wide.

Listen to the podcast and download this episode and others for free on Apple Podcasts, SoundCloud, Podbean, or our RSS Feed. You can also find us on Stitcher and Acast.

(more…)

Bacteria-powered Paper Battery

Batteries made of lemons and oranges have been gracing grade school laboratories for years. In addition to fruit-based batteries, now you can make a battery using spit.

The new paper-based bacteria-powered battery can be activated with a single drop of saliva, generating enough power to power an LED light for around 20 minutes.

“The battery includes specialized bacterial cells, called exoelectrogens, which have the ability to harvest electrons externally to the outside electrode,” Seokheun Choi, co-author of the new study, tells Nexus Media. “For the long-term storage, the bacterial cells are freeze-dried until use. This battery can even be used in challenging environmental conditions like desert areas. All you need is an organic matter to rehydrate and activate the freeze-dried cells.”

(more…)

EnergyIn an effort to expand South Australia’s renewable energy supply, the state has looked to business magnate Elon Musk to build the world’s largest lithium-ion battery. The goal of the project is to deliver a grid-scale battery with the ability to stabilize intermittency issues in the area as well as reduce energy prices.

An energy grid is the central component of energy generation and usage. By changing the type of energy that powers that grid in moving from fossil fuels toward more renewable sources, the grid itself changes. Traditional electrical grids demand consistency, using fossil fuels to control production for demand. However, renewable sources such as wind and solar provide intermittency issues that traditional fossil fuels do not. Researchers must look at how we can deliver energy to the electrical grid when the sun goes down or the wind stops blowing. This is where energy storage systems, such as batteries, play a pivotal role.

In South Australia, Musk’s battery is intended to sustain 100 megawatts of power and store that energy for 129 megawatt hours. To put it in perspective, that is enough energy to power 30,000 homes and, according to Musk, will be three times as powerful as the world’s current largest lithium-ion battery.

Musk hopes to complete the project by December, stating that “It’s a fundamental efficiency improvement to the power grid, and it’s really quite necessary and quite obvious considering a renewable energy future.”

(more…)

Instead of batteries, a new cell phone harvests the few microwatts of power it needs from a different source: ambient radio signals or light.

Researchers were also able to make Skype calls using the battery-free phone, demonstrating that the prototype—made of commercial, off-the-shelf components—can receive and transmit speech and communicate with a base station.

“We’ve built what we believe is the first functioning cell phone that consumes almost zero power,” says Shyam Gollakota, an associate professor of computer science & engineering at the University of Washington and coauthor of the paper.

“To achieve the really, really low power consumption that you need to run a phone by harvesting energy from the environment, we had to fundamentally rethink how these devices are designed.”

Researchers eliminated a power-hungry step in most modern cellular transmissions—converting analog signals that convey sound into digital data that a phone can understand. This process consumes so much energy that it’s been impossible to design a phone that can rely on ambient power sources.

(more…)

BatteryIn an effort to develop a more affordable, plentiful alternative to lithium-ion batteries, researchers from Purdue University are pursuing rechargeable potassium based batteries, demonstrating a way to derive carbon for battery electrodes from old tires.

“With the growth of rechargeable batteries for electronic devices, electric vehicles and power grid applications, there has been growing concern about the sustainability and cost of lithium,” says Vilas G. Pol, an associate professor in the Davidson School of Chemical Engineering at Purdue University and former member of ECS. “In the last decade, there has been rapid progress in the investigation of metal-ion batteries beyond lithium, such as sodium and potassium.”

Researchers in the field believe that potassium based batteries show potential for large-scale grid storage due to their low cost and the abundance of the element itself.

“The intermittent energy generated from solar and wind requires new energy storage systems for the grid,” Pol says. “However, the limited global availability of lithium resources and high cost of extraction hinder the application of lithium-ion batteries for such large-scale energy storage. This demands alternative energy storage devices that are based on earth-abundant elements.”

(more…)

  • Page 5 of 13