Converting Wastewater to Electricity

The new anode can transfer electrolytes from bacteria in wastewater to a microbial fuel cell.Image: Science Advances

The new anode can transfer electrolytes from bacteria in wastewater to a microbial fuel cell.
Image: Science Advances

With 783 million people world-wide lacking access to clean drinking water and more than 35 percent of the world’s population without access to improved sanitation facilities, researchers are pursuing new ways to clean wastewater that is both effective and energy efficient.

An interdisciplinary team from multiple institutions in China has developed a new freestanding anode that can take harmful electrolytes form bacteria in wastewater and transfer them to a microbial fuel cell. This new process opens the door to effectively cleaning wastewater while converting waste to electricity.

The treatment of wastewater is an essential, yet energy intensive, process. While scientists have been exploring new ways to treat wastewater, none of the option has been very energy efficient.

Many current wastewater treatment plants function through fermentation and the burning of methane. The research team from China opts for an alternative method, where they create sewage-based fuel cells that pull the bacterial electrolytes and create electricity.

(more…)

Fuel Cell Research Shows Promising Potential

When it comes to alternative energy solutions, many researchers are looking to fuel cells as a promising solution. With high theoretical efficiency levels and their environmentally friendly qualities, fuel cells could be an answer to both the energy crisis and climate issues. However, researchers are still looking at how to build a fuel cell so that it is not only efficient, but also cost effective.


Sadia Kabir, ECS student member and PhD student at the University of New Mexico, recently published a paper in the Journal of The Electrochemical Society detailing her novel work on graphene-supported catalysts for fuel cells. Kabir is moving from theory to proof with her new research, showcasing an efficient and economically viable fuel cell.

The research was compiled by an interdisciplinary team with representatives from the University of New Mexico, University of Portiers, and Franunhofer Institute for Chemical Technology.

(more…)

Key Development in Hydrogen Fuel Cell Vehicles

Hydrogen fuel cell vehicles have the potential to revolutionize the transportation system. From aiding the fight against climate change through clean emissions to reducing dependency on fossil fuels, hydrogen could potential help power the future and change mobility. Automakers believe that by 2020, there will be tens of thousands of hydrogen fuel cell vehicles on the road. In order to do this, we’re looking towards scientists to make innovation developments leading toward cheaper and more efficient technologies.

Creating a Hydrogen Fuel Cell Vehicle

Shawn Litster, ECS member and associate professor at Carnegie Mellon University, is doing just that. Lister, along with ECS student member William Epting, is focusing his attention on energy technologies that utilize electrochemical devices to further research in the development of the near-perfect fuel cell vehicle.

(Check out a past meeting abstract by the two on fuel cell electrode analysis.)

“We’re looking for ways to minimize the impact of transportation on society and the environment,” said Litster.


Litster and his team have discovered that one of the reasons for the high cost of development for hydrogen fuel cell vehicles is the nanoscale polymer films. While these films offer a host of positive qualities, they require expensive platinum to operate properly.

(more…)

Real Interface in Conventional SOFC

[Click to enlarge]

[Click to enlarge]

Photos and text by Shu-Sheng Liu.

Here is our image obtained by STEM. It was published recently in the Journal of The Electrochemical Society, 162 (2015) F750-F754. It was also presented in Glasgow conference.

It is a stable high-index Ni-YSZ interface of a conventional solid oxide fuel cell.

Our study is the first attempt to analyze the real interface in conventional SOFC.

Posted in Guest Post
Tagged ,

Graphene Opens Door to Better Fuel Cell

The new development provides a mechanism for engineers to design a simpler proton separation membrane.Image: Nature Communication

The new development provides a mechanism for engineers to design a simpler proton separation membrane.
Image: Nature Communication

We’ve all heard of graphene’s tremendous potential, which may be able to change the manufacturing process in many industries. The wonder material could make production faster, cheaper, and more efficient across the board.

Now, three ECS members have collaborated with other fellow scientists to develop a single layer graphene that could change the landscape of hydrogen fuel cell technology.

ECS members Robert Sacci, Sheng Dai, and Matthew Neurock are contributing authors on the recently published paper, “Aqueous proton transfer across single-layer graphene”.

(more…)

rod-borupRodney Borup of the Los Alamos National Laboratory will be awarded the 2015 Energy Technology Division Research Award for his pioneering work in energy conversion and storage, specifically related to sustainability and fuel cells.

The prestigious award was established in 1992 to encourage excellence in energy related research.

Dr. Borup is widely recognized for his work in fuel cell transportation with such corporate and academic organizations such as General Motors and Los Alamos National Laboratory (LANL). He joined LANL in 1994 as a post-doctoral researcher, where he would eventually move on to become the Program Manager for the Fuel Cells and Vehicle Technologies Program and Team Leader for Fuel Cells Program —titles which he currently holds.

(more…)

Research for More Effective Fuel Cell

Synthesizing the material as a thin film instead of as a bulk powder opens up new possibilities for fuel cell technology.Image: A. Gutiérrez-Llorente/Cornell University

Synthesizing the material as a thin film instead of as a bulk powder opens up new possibilities for fuel cell technology.
Image: A. Gutiérrez-Llorente/Cornell University

Researchers from Cornell University have developed a way to synthesize a new thin-film catalyst to improve efficiency and effectiveness in fuel cells.

For the first time ever, researchers were able to explain the epitaxial thin-film growth of a fundamental electrode component of the fuel cell, which could result in a more effective cathode.

“Up to now, research on oxygen catalysts in thin film form for clean-energy applications has been focused on the perovskite-structured oxides and their structural derivatives,” said lead researcher Araceli Gutierrez-Llorente. “The much less studied cubic pyrochlore structure is an appealing alternative to perovskites for such applications as fuel cell cathodes.”

(more…)

ECS Battery Division Awards

Battery icon

The ECS Battery Division is now accepting award nominations.

Please help recognize outstanding contributions of The Electrochemical Society members to the science and technology of primary and secondary batteries and fuel cells through the Battery Division Awards Program.

Nominations are now being accepted for:

These annual awards have been established by the Division to encourage excellence in battery and fuel cell R&D, recognize promising young engineers and scientists and encourage their publication in the publications of the Electrochemical Society.

The deadline for nominations is March 30, 2015.

Before applying, please review the award rules and complete the appropriate form.

I strongly encourage you to submit your nominations. Thank you.

With my best regards,

Robert Kostecki
ECS Battery Division, Chair

Member Spotlight – Yossef Elabd

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.Image: Texas A&M University

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.
Image: Texas A&M University

The Electrochemical Society’s Yossef A. Elabd is using electrochemical science to work toward global sustainability with his new advancements in fuel cell car technology.

Elabd, an active member of ECS’s Battery Division, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation – focusing not only on the science, but also the environment.

“I just want to drive my car with water vapor coming out the back of it,” Elabd said.

With this new technology and initiatives such as the ECS Toyota Young Investigator Fellowship, Elabd’s statement may become an achievable reality for many people in the near future.

The idea of the fuel cell vehicle is every environmentalist’s dream, but the current issues deal with the sustainability of the vehicle. The current fuel cell car uses a proton exchange membrane (PEM) electrolyte for its platinum-based electrodes.

(more…)

Toyota is looking to propel the future of the fuel cell vehicle with the recent announcement that they will be granting royalty-free use to thousands of their patents.

“I’m happy and extremely proud to announce to you today that Toyota will grant royalty-free use of all 5,680 of our fuel cell patents, including pending patents,” said Senior Vice President of Toyota’s Automotive Operations, Bob Carter, on January 5 at the Consumer Electronics Show (CES).

The patents are to be used by companies manufacturing and selling fuel cell vehicles. Carter stated that these patents – which are critical to the development and production of fuel cells vehicles – will be available through 2020.

(more…)

  • Page 2 of 3