Paper-like Material to Boost Li-ion Batteries

The newly developed silicon nanofiber structure allow the battery to be cycled hundreds of times without significant degradation.Image: Nature Scientific Reports

The newly developed silicon nanofiber structure allows the battery to be cycled hundreds of times without significant degradation.
Image: Nature Scientific Reports

Electric cars and personal electronics may get the battery boost they need with this new development in lithium-ion batteries.

Researchers from the University of California, Riverside have created silicon nanofibers that are 100 times thinner than human hair, which will provide the potential to boost the amount of energy that can be delivered per unit weight of the batteries.

The research has been detailed in the paper “Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO₂ Nanofibers.”

This from University of California, Riverside:

The nanofibers were produced using a technique known as electrospinning, whereby 20,000 to 40,000 volts are applied between a rotating drum and a nozzle, which emits a solution composed mainly of tetraethyl orthosilicate (TEOS), a chemical compound frequently used in the semiconductor industry. The nanofibers are then exposed to magnesium vapor to produce the sponge-like silicon fiber structure.

(more…)

Silicene Moves Us toward Super-Fast Computers

Researchers have created the first transistor out of silicene, the world's thinnest silicon material.Image: University of Texas at Austin

Researchers have created the first transistor out of silicene, the world’s thinnest silicon material.
Image: University of Texas at Austin

There’s an exciting new development in the world of single-atom thick materials, and surprisingly it doesn’t revolve around graphene.

Instead, scientist have shifted their attention to silicene: an exotic form of silicon that has fantastic electrical properties for computer chips.

Like graphene, silicene is a single-atom thick material that allows electrons to flow through it at amazingly high speeds. However, silicene does not occur naturally like graphene – it instead has to be grown in the lab on a sheet of silver.

Because of the difficulty encountered when attempting to produce silicene, its properties have only been theoretical until now. Recently, Deji Akinwande of the University of Texas at Austin turned his attention to this material and found a way to make a transistor out of silicene.

(more…)

‘Smart Skin’ Replicates Sense of Touch

A team has developed a skin that can stretch over the entire prosthesis; and its applications aren't just limited to pressure. It's embedded with ultrathin, single crystalline silicone nanoribbon, which enables an array of sensors.Credit: Kim et al./Nature Communications

The skin is embedded with ultrathin, single crystalline silicone nanoribbon, which enables an array of sensors.
Credit: Kim et al./Nature Communications

We’ve talked about the advancements in prosthetic limbs in the past, but now a group of researchers out of Seoul National University are taking innovation in prosthetics one step further with this new “smart skin.”

Researchers from the Republic of Korea have developed a stretchy synthetic skin embedded with sensors, which will be able to help those with prosthetics regain their sense of touch.

This from “Stretchable silicon nanoribbon electronics for skin prosthesis” in the journal Nature Communications:

This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies.

(more…)

  • Page 2 of 2
    • 1
    • 2
ECS
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.