Chemical Heritage FoundationECS members M. Stanley Whittingham and Yury Gogotsi will be panelists at the upcoming “Electrical Energy Storage Technologies That Enable the Future” symposium, hosted by the Chemical Heritage Foundation. The event will take place on January 11, 2018 in Philadelphia, PA. Read the full program below.

Moderator
Daryl Boudreaux, Principal, Boudreaux & Associates

Panelists
M. Stanley Whittingham, Distinguished Professor of Chemistry and Materials Science and Engineering, SUNY Binghamton

Yury Gogotsi, Distinguished University Professor of Materials Science and Engineering, Drexel University

(more…)

Fuel CellApplying a tiny coating of costly platinum just 1 nanometer thick—about 1/100,000th the width of a human hair—to a core of much cheaper cobalt could bring down the cost of fuel cells.

This microscopic marriage could become a crucial catalyst in new fuel cells that use generate electricity from hydrogen fuel to power cars and other machines. The new fuel cell design would require far less platinum, a very rare metal that sold for almost $900 an ounce the day this article was produced.

“This technique could accelerate our launch out of the fossil-fuel era,” says Chao Wang, an assistant professor of chemical and biomolecular engineering at Johns Hopkins University and senior author of a study published in the journal Nano Letters.

“It will not only reduce the cost of fuel cells,” Wang says. “It will also improve the energy efficiency and power performance of clean electric vehicles powered by hydrogen.”

(more…)

A new flexible, transparent electrical device inspired by electric eels could lead to body-friendly power sources for implanted health monitors and medication dispensers, augmented-reality contact lenses, and countless other applications, researchers report.

The soft cells—made of hydrogel and salt—form the first potentially biocompatible artificial electric organ that generates more than 100 volts. It produces a steady buzz of electricity at high voltage but low current, a bit like an extremely low-volume but high-pressure jet of water. It could be enough to power a small medical device like a pacemaker.

While the technology is preliminary, Michael Mayer, a professor of biophysics at the Adolphe Merkle Institute of the University of Fribourg in Switzerland and the paper’s corresponding author, believes it may one day be useful for powering implantable or wearable devices without the toxicity, bulk, or frequent recharging that come with batteries.

(more…)

BatteryNew research from Sandia National Laboratory is moving toward advancing solid state lithium-ion battery performance in small electronics by identifying major obstacles in how lithium ions flow across battery interfaces.

The team of researchers, including ECS member Forrest Gittleson, looked at the nanoscale chemistry of solid state batteries, focusing on the area where the electrodes and electrolytes make contact.

“The underlying goal of the work is to make solid-state batteries more efficient and to improve the interfaces between different materials,” says Farid El Gabaly, coauthor of the recently published work. “In this project, all of the materials are solid; we don’t have a liquid-solid interface like in traditional lithium-ion batteries.”

According to El Gabaly, the faster the lithium can travel from one electrode to the other, the more efficient the batteries could be.

(more…)

Transforming Carbon Dioxide

Carbon dioxideCarbon dioxide accounts for over 80 percent of all greenhouse gas emissions. For many, carbon dioxide emissions account for significant environmental issues, but for researchers like Haotian Wang of Harvard University, carbon dioxide could be the perfect raw material.

According to a new study, Wang and his team are well on the way to developing a system that uses renewable electricity to electrochemically transform carbon dioxide into carbon monoxide. The carbon monoxide could then be used in a host of industrial processes, such as plastics production, creating hydrocarbon products, or as a fuel itself.

This from Harvard University:

The energy conversion efficiency from sunlight to CO can be as high as 12.7%, more than one order of magnitude higher than natural photosynthesis.

(more…)

Researchers have developed a prototype device that mimics natural photosynthesis to produce ethylene gas using only sunlight, water, and carbon dioxide.

The novel method, which produces ethylene at room temperature and pressure using benign chemicals, could be scaled up to provide a more eco-friendly and sustainable alternative to the current method of ethylene production.

Ethylene, which is the building block of polyethylene, is an important chemical feedstock produced in large quantities for manufacturing plastics, rubber, and fibers. More than 170 million tons of ethylene were produced worldwide in 2015 alone, and the global demand is expected to exceed 220 million tons by 2020.

(more…)

BiofuelNew research stitches together the best parts of several different bacteria to synthesize a new biofuel product that matches current engines better than previously produced biofuels.

“My lab is interested in developing microbial biosynthetic processes to make biofuels, chemicals, and materials with tailored structures and properties,” says Fuzhong Zhang, associate professor at the School of Engineering & Applied Science at Washington University in St. Louis. “Previously, we engineered E.coli to produce a precursor compound that leads to the production of advanced biofuels. In this work, we took the next step toward the actual manufacture.”

Zhang’s research focuses on engineering metabolic pathways that, when optimized, allow the bacteria to act as a biofuel generator. In its latest findings, recently published in Biotechnology for Biofuels, Zhang’s lab used the best bits of several other species—including a well-known pathogen—to enable E. coli to produce branched, long-chain fatty alcohol (BLFL), a substance that can be used as a freeze-resistant, liquid biofuel.

(more…)

Poplar treeNew research indicates that poplar trees could be an economically viable biofuel material.

In the quest to produce affordable biofuels, poplars are one of the Pacific Northwest’s best bets—the trees are abundant, fast-growing, adaptable to many terrains, and their wood can become substances used in biofuel and high-value chemicals that we rely on in our daily lives.

But even as researchers test poplars’ potential to morph into everything from ethanol to chemicals in cosmetics and detergents, a commercial-scale processing plant for poplars has yet to be achieved. This is mainly because production costs still are not competitive with the current price of oil.

Now, a team of researchers is trying to make poplar a viable competitor by testing the production of younger poplar trees that could be harvested more frequently—after only two or three years—instead of the usual 10- to 20-year cycle.

(more…)

BatteryA team of researchers from the Joint Center for Energy Storage Research is taking a potential major step toward developing energy dense, safe solid state magnesium-ion batteries.

This research marks another step in pursing batteries that utilize solid electrolytes, which could offer significant safety benefits over conventional lithium-ion batteries.

The work was developed out of efforts to create a magnesium battery with a liquid electrolyte. While magnesium has promising properties for energy storage, the researchers had trouble finding a viable liquid electrolyte for the technology that wouldn’t corrode.

“Magnesium is such a new technology, it doesn’t have any good liquid electrolytes,” said Gerbrand Ceder, co-author of the research and member of ECS. “We thought, why not leapfrog and make a solid state electrolyte?”

(more…)

AlgaeA nanoparticle that can help clean water of cadmium becomes toxic once taking in the metal. But research finds that organic matter, in this case from algae, reduces that toxicity.

Nanotechnology plays an important role in removing toxic chemicals found in the soil. Currently more than 70 Environmental Protection Agency (EPA) Superfund sites are using or testing nanoparticles to remove or degrade environmental contaminants. One of these—nano-zero-valent iron—is widely used, though its effect on organisms has not been examined.

In a recent experiment, a team of scientists tested the effect of sulfurized nano-zero-valent iron (FeSSi) on a common freshwater alga Chlamydomonas reinhardtii). They found that FeSSi picked up cadmium from a watery medium and alleviated cadmium toxicity to that alga for more than a month.

(more…)

ECS
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.